В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Пряма КС дотикається то кола із центром О в точці М. МА - хорда кола. Кут АМС дорівнює 135 градусів. Знайти кут МОА.

Показать ответ
Ответ:
Alchimick
Alchimick
21.11.2021 10:19

3) (2 - 3х)(5х - 3) - х(2 - х) = 3 - 12х²,

10х - 6 - 15х² + 9х - 2х + х² - 3 + 12х² = 0,

-2х² + 17х - 9 = 0,

2х² - 17х + 9 = 0,

a = 2, b = -17, c = 9;

4) (1 - 2x)(2x - 4) - 3(2 - x) = 3 - 9x²,

2x - 4 - 4x² + 8x - 6 + 3x - 3 + 9x² = 0,

5x² + 13x - 13 = 0,

a = 5, b = 13, c = -13;

5) (5 + 2x)(4x - 1) - 2(2 + 3x) = -13x²,

20x - 5 + 8x² - 2x - 4 - 6x + 13x² = 0,

21x² + 12x - 9 = 0,

7x² + 4x - 3 = 0,

a = 7, b = 4, c = -3;

6) (2 - 6x)(x - 4) - 3x(1 - x) = -22x²,

2x - 8 - 6x² + 24x - 3x + 3x² + 22x² = 0,

19x² + 23x - 8 = 0,

a = 19, b = 23, c = -8.

0,0(0 оценок)
Ответ:
golovkosofia868
golovkosofia868
30.04.2021 17:36

1. Будем доказывать методом математической индукции.

Проверяем истинность утверждения при n = 1:

а) 2*49 + 16 + 40 = 154 = 11*14  -  делится на 11.

б) Предположим, что 2*7^(2k) + 16^k +8*5^k   - делится на 11. Где k - произвольное натуральное число.

в) Докажем, что тогда при n = k+1 полученное выражение - тоже делится на 11:

2*7^{2k+2}+16^{k+1}+8*5^{k+1}=49*(2*7^{2k})+16*16^k+5*(8*5^k)=

5(2*7^k+16^k+8*5^k)+(44*(2*7^{2k})+11*16^k)

Теперь четко видно что оба больших слагаемых делятся на 11:

первое - исходя из предположения, второе - имеет 11 как общий сомножитель для своих слагаемых.

Итак мы доказали , что если при произвольном n= k выражение делится на 11, то и при n = k+1 выражение делится на 11.

Значит исходное выражение делится на 11.  что и требовалось доказать.

2)(a+1)x^2-(2a+5)x+a=0,\ \ \ \ D=4a^2+20a+25-4a^2-4a=16a+25

D>0    a>-25/16   a>-1,5625

x_{1}=\frac{2a+5+\sqrt{16a+25}}{2(a+1)}-1

x_{2}=\frac{2a+5-\sqrt{16a+25}}{2(a+1)}-1

Разбиваем ОДЗ на две части:

а) (-1; беск)

2a+5+\sqrt{16a+25}-2a-2

2a+5-\sqrt{16a+25}-2a-2

 

\sqrt{16a+25}-4a-7

\sqrt{16a+25}<4a+7

Первое из написанных неравенств верно. Проверим второе:

16a+25<16a^2+56a+4916a+25<16a^2+56a+49,\ \ \ \ 16a^2+40a+240,\ \ D=64

Корни  -1; -1,5   Решение с учетом ОДЗ: (-1; беск)

б) (-1,5625; -1)

{2a+5+\sqrt{16a+25}}<-2a-2

2a+5-\sqrt{16a+25}<-2a-2

 

\sqrt{16a+25}<-4a-7

Правая чать на выбранной области - отрицательна, что недопустимо. Здесь решений нет.

ответ: (-1; бескон).

3.

[\sqrt{1-sin^2153}+\sqrt{tg^2207-sin^2207}]sin63=[-cos153+\frac{sin^2207}{-cos207}]sin63

=[sin63+\frac{cos^263}{sin63}]sin63=sin^263+cos^263=1

ответ: 1

 

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота