Если прямая касается параболы, то коэффициент a можно рассчитать как минимум 3мя разными
1)Дискриминант
-----
Если прямая касается параболы тогда дискриминант этого уравнения будет равняться нулю.
ответ 7/4
2)Теорема виета
Не сильно отличается от первого:
если прямая касается параболы, тогда квадратный трехчлен имеет всего один корень, тогда по т. виета:
-------------
из 1:
подставим в 2:
ответ 7/4 (менее быстрый метод но зато нам сразу будет известна точка касания)
3)Производная
если прямая касается параболы, тогда значение производной прямой в точке касания равно значению производной параболы в точке касания:
подставим в первое:
a=7/4
ответ 7/4 (Опять же не самый быстрый но зато мы сразу узнаем координаты касания)
Если прямая касается параболы, то коэффициент a можно рассчитать как минимум 3мя разными
1)Дискриминант
-----
Если прямая касается параболы тогда дискриминант этого уравнения будет равняться нулю.
ответ 7/4
2)Теорема виета
Не сильно отличается от первого:
если прямая касается параболы, тогда квадратный трехчлен имеет всего один корень, тогда по т. виета:
-------------
из 1:
подставим в 2:
-------------
ответ 7/4 (менее быстрый метод но зато нам сразу будет известна точка касания)
3)Производная
если прямая касается параболы, тогда значение производной прямой в точке касания равно значению производной параболы в точке касания:
подставим в первое:
a=7/4
ответ 7/4 (Опять же не самый быстрый но зато мы сразу узнаем координаты касания)