Число a - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x−a .
Отсюда, в частности, следует, что множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .
Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
Пусть a - целый корень приведенного многочлена P(x) с целыми коэффициентами. Тогда для любого целого k число P(k) делится на a−k .
Теорема Безу дает возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше: если P(a)=0, то заданный многочлен P(x) можно представить в виде:
P(x)=(x−a)Q(x)
Таким образом, один корень найден и далее находятся уже корни многочлена Q(x), степень которого на единицу меньше степени исходного многочлена. Иногда этим приемом - он называется понижением степени - можно найти все корни заданного многочлена.
Объяснение:
Число a - корень многочлена P(x) тогда и только тогда, когда P(x) делится без остатка на двучлен x−a .
Отсюда, в частности, следует, что множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0 .
Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми).
Пусть a - целый корень приведенного многочлена P(x) с целыми коэффициентами. Тогда для любого целого k число P(k) делится на a−k .
Теорема Безу дает возможность, найдя один корень многочлена, искать далее корни многочлена, степень которого уже на единицу меньше: если P(a)=0, то заданный многочлен P(x) можно представить в виде:
P(x)=(x−a)Q(x)
Таким образом, один корень найден и далее находятся уже корни многочлена Q(x), степень которого на единицу меньше степени исходного многочлена. Иногда этим приемом - он называется понижением степени - можно найти все корни заданного многочлена.
* * * * * * * * * * * * * * * * * * * * * * *
Используя теорему Безу, найдите остаток от деления многочлена x³+2x² -13x+10 на x - 2.
ответ: 0.
Объяснение: P(x) =(x - a)*Q(x) +R ⇒ R = P(a)
x³+2x² - 13x+10 = (x - 2) * (Ax²+Bx +C) + R ; R_остаток
x =2. 2³ +2*2² -13*2 +10 = (2-2) * (Ax²+Bx +C) + R ⇒ R =0
* * * * * * * * * * * * * * * * * * * * * * * *
x=2 является корнем многочлена P(x) = x³+2x² -13x+10
т.к. 2³ +2*2² -13*2 +10 =8+ 8 - 26 +10 = 0
* * * ! 2 является делителем свободного члена_10 * * *
следовательно x³+2x² -13x+10 делится на (x-2) ,без остатка
* * * остаток равен нулю * * *
x³+2x²-13x+10 = (x -2) (x² +4x - 5)
* * * x³+2x²-13x+10 =x³ - 2x²+4x² -8x -5x +10 =
x²(x-2) +4x(x -2) -5(x-2) = (x-2) (x²+4x -5) = (x-2)(x-1)(x+5)
* * * Делить можно а также столбиком или по схеме Горнера * * *
корни { -5 ; 1 ; 2} являются делителями свободного члена