Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Venjin
05.01.2022 09:30 •
Алгебра
Прямая y=kx+b проходит через точки М(-2;9) и N(3;4). Напишите уравнение этой прямой
Показать ответ
Ответ:
kirill1s
15.07.2022 13:48
0,2х + 0,2х²·(8х - 3) = 0,4х²·(4х - 5)
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
0,0
(0 оценок)
Ответ:
Studio1
21.11.2021 06:27
Так как косинус четная функция, то
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π
0,0
(0 оценок)
Популярные вопросы: Алгебра
maksimenkokostp088j4
23.04.2023 03:48
Решить. (5d-1)(5d++1)² при d=110 ответ: -1114 заранее ))...
АУЕшник2281337
23.04.2023 03:48
22.1. является ли линейной функция: 1)y=x+1,9; 2)y=13-x; 3)y=x во 2 степени-5; 4)y=5 1/3; 5)y=0,5x-3; 6)y=-x/11+3?...
utrobin7
28.11.2021 02:51
У выражения cos65°-cos25°=...
2001snk
13.11.2020 06:39
З двох міст відстань між якими дорівнює 300 км виїхали одночасно на зустріч один одному легковий і вантажний автомобіль, які зустрілися через 2,5 год. Знайдіть швидкість кожного...
tatyanamazur90
20.04.2023 00:45
Областю визначення якої із наведених функцій є всі невід ємні числа?О г 3)y = \frac{1}{x} 4)y = {x}^{2}...
sviatolavbazil
25.09.2021 03:20
Какое из чисел отмечено на координатной прямой точкой А? задание прикрепила!)))...
Аньсминожек
19.04.2020 08:52
Число 180 представити у вигляді трьох додатних доданків так, ( ) щоб два з них відносились, як 1:2, а добуток всіх трьох доданків був найбільшим...
Jirnyi
03.11.2022 17:05
3. Внесіть множник під знак кореня: -0.1√60...
ktuj240
30.11.2022 18:49
Постройте график функции Y= - x^2 +2x + 2...
софия730
08.03.2023 04:07
Доказать что число 16 в двадцатой степени + 2 в семьдесят шестой степени делятся на натуральное число m 1.найти m...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
0,2x·(1 + 0,2x·(8x - 3)) = 0,4x²·(4x - 5)
0,2x·(1 + 0,2x·(8x - 3)) - 0,4x²·(4x - 5) = 0
0,2x·(1 + 1,6x² - 0,6x) - 0,2x·2x·(4x - 5)=0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 + 1,6x² - 0,6x - 8x² + 10x) = 0
0,2x·(1 - 6,4x² + 9,4x) = 0
x=0 или 6,4х² - 9,4х - 1 = 0
64х² - 94 х - 10 = 0
D=94²+4·64·10=8836+2560=11396
x=(94-√11396)/128 >0 или х=(94+√11396)/128 >0
x=0 - меньший корень уравнения
cos(π/2-3x)= cos (3x-π/2)
Решаем уравнение:
cos ( 3x-π/2) = √3/2
3x - π/2 = ± arccos (√3/2) + 2π·n, n∈ Z
3x - π/2 = ± (π/6) + 2π·n, n∈ Z
3x = π/2 ± (π/6) + 2π·n, n∈ Z
x = π/6 ± (π/12) + (2π/3)·n, n∈ Z
или
вычитая получим: складывая получим:
х₁= π/2 - (π/6) + (2π/3)·n, n∈ Z х₂= π/2 + (π/6) + (2π/3)·n, n∈ Z
х₁= π/3 + (2π/3)·n, n∈ Z х₂=2π/3 + (2π/3)·n, n∈ Z
при n =0 получаем корни
π/3 и 2π/3
при n = 1
(π/3) + (2π\3) = π и (2π/3) + (2π/3)= 4π/3
при n = 2
(π/3) + (2π/3)·2=(5π\3) и ( 2π/3) +(2π/3)·2=(6π\3)=2π
3π/2 <(5π/3) <2π
3π/2 < 2π≤2π
ответ. На [3π/2; 2π] два корня: (5π.3) и 2π