Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
Объяснение:
Значение 2-й функции равно 133
Объяснение:
Пусть уравнение 1-й функции у₁ = k₁x + b₁
Уравнение 2-й функции у₂ = k₂x + b₂
По условию при х = 1 у₁ = у₂
k₁ + b₁ = k₂ + b₂ (1)
При х = 7
7k₁ + b₁ + 11 = 7k₂ + b₂ (2)
При х = 19
19k₁ + b₁ = 100 (3)
Из (3) получим
b₁ = 100 - 19k₁ (4)
Подставим в (2)
7k₁ + 100 - 19k₁ + 11 = 7k₂ + b₂
111 - 12k₁ = 7k₂ + b₂
12k₁ = 111 - 7k₂ - b₂ (5)
Из (4)
12b₁ = 1200 - 19 · 12k₁
12b₁ = 1200 - 19 · (111 - 7k₂ - b₂)
12b₁ = 1200 - 2109 + 133k₂ + 19b₂
12b₁ = -909 + 133k₂ + 19b₂ (6)
Подставим (5) и (6) в (1), предварительно умножив (1) на 12
12k₁ + 12b₁ = 12k₂ + 12b₂
111 - 7k₂ - b₂ - 909 + 133k₂ + 19b₂ = 12k₂ + 12b₂
126k₂ + 18b₂ -798 = 12k₂ + 12b₂
114k₂ + 6b₂ = 798
19k₂ + b₂ = 133
Поскольку у₂ = k₂x + b₂
то при х = 19
получим у₂ = 19k₂ + b₂
То есть у₂ = 133