она проходит полный круг, т.е. 360° за 12 часов или за 12 · 60 = 720 минут.
Vч = 360°/720 = 0,5 (градуса в минуту)
Найдем скорость минутной стрелки:
она проходит полный круг, т.е. 360° за 1 час или за 60 минут.
Vм = 360°/60 = 6 (градусов в минуту)
Значит за 4 часа 45 мин минутная стрелка полных круга и 270°,
а часовая:
4 ч 45 мин = 4 · 60 + 45 мин = 285 мин
0,5° · 285 = 142,5°
270° - 142,5° = 127,5° - меньший из углов между стрелками.
Чтобы минутная стрелка догнала часовую первый раз, ей надо "компенсировать" расстояние между ними, т.е. больший из углов:
360° - 127,5° = 232,5°
Скорость опережения:
6 - 0,5 = 5,5 (градусов в минуту)
232,5° : 5,5 = 42 и 3/11 (мин) - время, за которое минутная стрелка первый раз догонит часовую.
Далее, расстояние между стрелками будет составлять 360°. Если разделим его на скорость опережения, найдем время, за которое минутная стрелка будет догонять часовую:
360° : 5,5 = 65 и 5/11 (мин).
Это время повторится 6 раз. Итого:
(65 и 5/11) · 6 + (42 и 3/11) = 720/11 · 6 + 465/11 = 4320/11 + 465/11 = 4785/11 = 435 мин
Уравнение любой касательной к любому графику находится по формуле:
Где производная функции в данной точке. А точка касания по иксу.
1) Поначалу у функции мы должны найти производную общего типа этой функции. Это степенная функция, а производная любой степенной функции находится следующей формулой: - где n это степень. В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2) Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы. Если что-то не правильно, то это значит что вы не правильно написали условие.
Найдем скорость часовой стрелки:
она проходит полный круг, т.е. 360° за 12 часов или за 12 · 60 = 720 минут.
Vч = 360°/720 = 0,5 (градуса в минуту)
Найдем скорость минутной стрелки:
она проходит полный круг, т.е. 360° за 1 час или за 60 минут.
Vм = 360°/60 = 6 (градусов в минуту)
Значит за 4 часа 45 мин минутная стрелка полных круга и 270°,
а часовая:
4 ч 45 мин = 4 · 60 + 45 мин = 285 мин
0,5° · 285 = 142,5°
270° - 142,5° = 127,5° - меньший из углов между стрелками.
Чтобы минутная стрелка догнала часовую первый раз, ей надо "компенсировать" расстояние между ними, т.е. больший из углов:
360° - 127,5° = 232,5°
Скорость опережения:
6 - 0,5 = 5,5 (градусов в минуту)
232,5° : 5,5 = 42 и 3/11 (мин) - время, за которое минутная стрелка первый раз догонит часовую.
Далее, расстояние между стрелками будет составлять 360°. Если разделим его на скорость опережения, найдем время, за которое минутная стрелка будет догонять часовую:
360° : 5,5 = 65 и 5/11 (мин).
Это время повторится 6 раз. Итого:
(65 и 5/11) · 6 + (42 и 3/11) = 720/11 · 6 + 465/11 = 4320/11 + 465/11 = 4785/11 = 435 мин
Где производная функции в данной точке. А точка касания по иксу.
1)
Поначалу у функции мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
- где n это степень.
В нашем случае:
Так, нашли производную общего случая.
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
2)
Опять же, найдем производную
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
То есть, берешь любой икс, и вставляешь в выражение касательной вместо и получаешь уравнение касательной.
Это и есть окончательные ответы.
Если что-то не правильно, то это значит что вы не правильно написали условие.