Биквадратное уравнение - это как бы двойное квадратное уравнение (приставка би - два). Вместо неизвестного в четверной степени вводится неизвестное во второй степени.
Вот в принципе то и всё:) достаточно это знать и биквадратные уравнения любые сможешь решить, ну, конечно, еще надо знать как решаются квадратные уравнения:)
С применением степени
(x^2 - 1)/(x^3 + 1)(квадрат и куб) и дроби
Квадратный корень
sqrt(x)/(x + 1)Кубический корень
cbrt(x)/(3*x + 2)С применением синуса и косинуса
2*sin(x)*cos(x)Арксинус
x*arcsin(x)Арккосинус
x*arccos(x)Применение логарифма
x*log(x, 10)Натуральный логарифм
ln(x)/xЭкспонента
exp(x)*xТангенс
tg(x)*sin(x)Котангенс
ctg(x)*cos(x)Иррациональне дроби
(sqrt(x) - 1)/sqrt(x^2 - x - 1)Арктангенс
x*arctg(x)Арккотангенс
x*arсctg(x)Гиберболические синус и косинус
2*sh(x)*ch(x)Гиберболические тангенс и котангенс
ctgh(x)/tgh(x)Гиберболические арксинус и арккосинус
x^2*arcsinh(x)*arccosh(x)Гиберболические арктангенс и арккотангенс
x^2*arctgh(x)*arcctgh(x)ну например задание, решить уравнение 4x^4 - 5x^2 + 1 = 0
пусть x^4 = a^2 - вводим новую переменную, зависящую от старой
4a^2 - 5a +1 = 0 - решается простое квадратное уравнение, которое, надеюсь, решать умеешь.
D= 25 - 4*4*1 = 9
a1=1; a2=0,25
далее возвращаемся к нашему иксу, который нужно найти
x^4 = a1^2 или x^4 = a2^2
x^4 = 1^2 x^4 = 0,25^2
x1=1; x2=-1; x3=0,5; x4=-0,5
Вот в принципе то и всё:) достаточно это знать и биквадратные уравнения любые сможешь решить, ну, конечно, еще надо знать как решаются квадратные уравнения:)