Прямой угол разделен лучом, исходящим из его вершины, на два угла, таким образом, что половина одного угла равна трети другого. Чему равен больший из этих двух углов
2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.
a x^{2} +bx + c = a(x - x_{1} )(x - x_{2} )
Где, x_{1} и x_{2} - корни уравнения
a) x^{2} +14x + 48 = 0
D = 14^{2} - 4*1*48 = 4 = 2^{2}
x_{1} = \frac{-14+2}{2} = -6
x_{2} = \frac{-14-2}{2} = 8
x^{2} +14x + 48 = (x - (-6))(x - (-8)) = (x+6)(x+8)
b) 25 x^{2} -10x-12 =0
D = (-10)^{2} - 4*25*(-12) = 1300= (10 \sqrt{13}) ^{2}
x_{1} = \frac{-(-10 +10 \sqrt{13})}{2*25} = \frac{1}{5} + \frac{1}{5} \sqrt{13}
x_{2} = \frac{-(-10 -10 \sqrt{13})}{2*25} = \frac{1}{5} - \frac{1}{5} \sqrt{13}
Подставляем в формулу:
25 x^{2} -10x-12 = 25(x - ( \frac{1}{5} + \frac{1}{5} \sqrt{13} ))(x - (\frac{1}{5} - \frac{1}{5} \sqrt{13}) ) = (25x -5 + 5 \sqrt{13} )(x - (\frac{1}{5} - \frac{1}{5} \sqrt{13}) ) = (25x -5 + 5 \sqrt{13} )(x -\frac{1}{5} + \frac{1}{5} \sqrt{13}))
Объяснение:
1.Так как количество опытов n = 700 довольно велико, то используем формулы Лапласа.
а) Задано: n = 700, p = 0,35, k = 270.
Найдем P700(270). Используем локальную теорему Лапласа.
Находим:
Значение функции φ(x) найдем из таблицы:
б) Задано: n = 700, p = 0,35, a = 230, b = 270.
Найдем P700(230 < k < 270).
Используем интегральную теорему Лапласа (23), (24). Находим:
Значение функции Ф(x) найдем из таблицы:
в) Задано: n = 700, p = 0,35, a = 270, b = 700.
Найдем P700(k > 270).
2.Статистическая вероятность обрыва нити в течение часа равна p = 10/100 = 0,1 и, следовательно, q = 1 – 0,1 = 0,9; n = 80; k = 7.
Поскольку n велико, то используется локальная теорема Лапласа (23). Вычисляем:
Воспользуемся свойством φ(-x) = φ(x), находим φ(0,37) ≈ 0,3726, а затем вычисляем искомую вероятность:
Таким образом, вероятность того, что в течение часа на 80 веретенах произойдет 7 обрывов нити, приближенно равна 0,139.
Наивероятнейшее число k0 наступлений события при повторных испытаниях определим по формуле (14). Находим: 7,1 < k0 < 8,1. Поскольку k0 может быть только целым числом, то k0 = 8.