Пусть d - расстояние от центра окружности радиуса r до прямой p. Как прямая p с кругом? если r = 15 см, d = 12 см;
если r = 4 см, d = 7 см;
если r = 8 см, d = 8 см;
А) имеет общую точку; нет общих точек; есть одно общее;
Б) нет общей точки; нет общих точек; есть одно общее;
В) имеет общую точку; есть общие точки; есть одно общее;
Г) имеет общую точку; нет общих точек; нет точек соприкосновения;
ответ: v катера=18км/ч; v течения=2км/ч
Объяснение: пусть скорость катера будет "х", а скорость течения реки "у". Если катер шёл по течению 1 час, то он х+у)×1, так как к его скорости прибавилась скорость течения. Если он шёл по озеру и на озере течения нет, то он своей скоростью ещё 2 часа, т.е 2х и за это время он км. Составим уравнение: (х+у)×1+2х=56
Нам известно что катер шёл против течения 3 часа и км, тогда на обратном пути он шёл со скоростью (х-у)×3=48. Составим систему уравнений:
{(х+у)×1+2х=56.
{(х-у)3=48
{х+у+2х=56
{х-у=48÷3
{3х+у=56
{х-у=16
{3х+у=56
{х=16+у
Теперь подставим значение х в первое уравнение:
3(16+у)+у=56
48+3у+у=56
4у=56-48
4у=8
у=8÷4
у=2; скорость течения=2км/ч
Теперь найдём скорость катера, подставив значение у:
х=16+2=18км/ч; скорость катера 18км/ч
ответ: v катера=18км/ч; v течения=2км/ч
Объяснение: пусть скорость катера будет "х", а скорость течения реки "у". Если катер шёл по течению 1 час, то он х+у)×1, так как к его скорости прибавилась скорость течения. Если он шёл по озеру и на озере течения нет, то он своей скоростью ещё 2 часа, т.е 2х и за это время он км. Составим уравнение: (х+у)×1+2х=56
Нам известно что катер шёл против течения 3 часа и км, тогда на обратном пути он шёл со скоростью (х-у)×3=48. Составим систему уравнений:
{(х+у)×1+2х=56.
{(х-у)3=48
{х+у+2х=56
{х-у=48÷3
{3х+у=56
{х-у=16
{3х+у=56
{х=16+у
Теперь подставим значение х в первое уравнение:
3(16+у)+у=56
48+3у+у=56
4у=56-48
4у=8
у=8÷4
у=2; скорость течения=2км/ч
Теперь найдём скорость катера, подставив значение у:
х=16+2=18км/ч; скорость катера 18км/ч