Пусть х1, х2, х, корни многочлена P(x) = x' + px' + qx + r. Тогда x' + px' + qx +r = (x-x1)(x - x2) (x - x2) Выразите сумму корней, сумму попарных произведений корней и произведение корней через р, q и г. Попробуйте сформулировать вывод суть обобщенной теоремы Виета для многочлена третьего порядка
Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.
Найдем сумму этих пяти чисел:
х + (х + 1) + (х + 2) + (х + 3) + (х + 4) = 5 * х + 10 = 5 * (х + 2).
Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.
Объяснение:)
подстановки.
{3x - y = 7 ⇒ у = 3х - 7
{2x + 3y = 1
2х + 3(3х - 7) = 1
2х + 9х - 21 = 1
11х = 1 + 21
11х = 22
х = 22 : 11
х = 2
у = 3 * 2 - 7 = 6 - 7
у = - 1
ответ : ( 2 ; - 1) .
сложения.
{3x - y = 7 | * 3
{2x + 3y = 1
{9x - 3y = 21
{2x + 3y = 1
(9x - 3y) + (2x + 3y) = 21 + 1
(9x + 2x) + ( - 3y + 3y) = 22
11x = 22
x = 22 : 11
х = 2
3 * 2 - у = 7
6 - у = 7
-у = 7 - 6
-у = 1
у = - 1
ответ : ( 2 ; - 1) .