Искомые числа А0, А, А1, А2. Пусть q - знаменатель геометрической прогрессии, тогда имеем: А1 = А* q и A2 = A*q*q и, кроме того, так как первые три числа - арифметическая прогрессия, её шаг равен А1 - А, откуда находим первое число: А0 = А - (А1 - А) сумма второго и третьего числа равна 6 по условию: А + А*q = 6, или A = 6/(1+q) Сумма крайних чисел равна 7: 2*А - A*q + A*q**2 = 7 подставляем А и получаем квадратное уравнение: q**2 - q + 2 = 7/6*(1+q) Преобразуем: 6q**2 - 13q + 5 + 0 имеем два корня: q = 1/2 и q = 5/3. Искомые числа соответственно 6 4 2 1 и 3/4 9/4 15/4 25/4
Обозначим числа x1, x2, x3, x4, разность арифметической прогрессии -d (минус, потому что она убывающая), тогда x2=x1-d, x3=x1-2d.
Причём d > 0
Знаменатель геометрической прогрессии обозначим q.
x3=x1-2d=x2*q=(x1-d)*q
x4=x2*q^2=(x1-d)*q^2
x1+x4=x1+(x1-d)*q^2=7
x2+x3=x1-d+x1-2d=6
Из 4 уравнения
x1=(6+3d)/2=3+1,5d
x2=a1-d=3+0,5d
x3=a2-d=3-0,5d=(3+0,5d)*q
q=(3-0,5d)/(3+0,5d)
q^2=(3-0,5d)^2/(3+0.5d)^2
x1+x4=3+1,5d+(3+0,5d)(3-0,5d)^2/(3+0,5d)^2=7
3+1,5d+(3-0,5d)^2/(3+0,5d)=7
Умножаем на знаменатель.
(3+1,5d)(3+0,5d)+(3-0,5d)^2=7(3+0,5d)
9+4,5d+1,5d+0,75d^2+9-3d+0,25d^2=21+3,5d
18+3d+d^2-21-3,5d=0
d^2-0,5d-3=0
2d^2-d-6=0
D=1-4*2(-6)=49=7^2
d1=(1-7)/4=-6/4<0 -не подходит
d2=(1+7)/4=2>0 - подходит.
d=2; x1=3+1,5d=3+3=6;
x2=6-2=4; x3=4-2=2;
q=x3/x2=2/4=0,5; x4=2*0,5=1.
ответ: 6; 4; 2; 1
Пусть q - знаменатель геометрической прогрессии, тогда имеем:
А1 = А* q и A2 = A*q*q
и, кроме того, так как первые три числа - арифметическая прогрессия, её шаг равен А1 - А, откуда находим первое число:
А0 = А - (А1 - А)
сумма второго и третьего числа равна 6 по условию:
А + А*q = 6, или A = 6/(1+q)
Сумма крайних чисел равна 7:
2*А - A*q + A*q**2 = 7
подставляем А и получаем квадратное уравнение:
q**2 - q + 2 = 7/6*(1+q)
Преобразуем:
6q**2 - 13q + 5 + 0
имеем два корня: q = 1/2 и q = 5/3.
Искомые числа соответственно 6 4 2 1 и 3/4 9/4 15/4 25/4