Пусть v км/ч - скорость первого автомобиля, s -расстояние между А и В. Первый автомобиль затратил на весь путь время t1=s/v, второй - время t2=s/(2*(v-6))+s/(2*56). По условию, t1=t2, откуда получаем уравнение s/v=s/(2*(v-6))+s/(2*56), или - по сокращении на s - уравнение 1/v=1/(2*(v-6))+1/(2*56). Приведя все дроби к общему знаменателю 2*56*v*(v-6), получаем уравнение 112*(v-6)/(2*56*v*(v-6))=56*v/(2*56*v*(v-6))+v*(v-6)/(2*56*v*(v-6)). Из равенства знаменателей следует равенство числителей, откуда получаем уравнение 112*v-672=56v+v²-6v, или v²-62*v+672=0. Дискриминант D=(62)²-4*1*672=1156=34². Тогда v1=(62+34)/2=48 км/ч, v2=(62-34)/2=14 км/ч. Но так как по условию v>45 км/ч, то v=48 м/ч. ответ: 48 км/ч.
x>0,y>0
{x²+y²=5
{log(2)x+log(2)y=1⇒log(2)xy=1⇒xy=2⇒2xy=4
прибавим
x²+y²+2xy=9
(x+y)²=9
a)x+y=-3
x=-3-y
-3y-y²=2
y²+3y+2=0
y1+y2=-3 U y1*y2=2
y1=-2 не удов усл
у2=-1 не удов усл
б)x+y=3
x=3-y
3y-y²=2
y²-3y+2=0
y1+y2=3 U y1*y2=1
y1=1⇒x1=2
y2=2⇒x2=1
(2;1);(1;2)
2
x>0,y>0
{x²-y²=12
log(2)x-log(2)y1⇒log(2)(x/y)=1⇒x/y=2⇒x=2y
4y²-y²=12
3y²=12
y²=4
y1=-2 не удов усл
y2=2⇒x=4
(4;2)
3
x>0,y>0
{x²+y²=25
lgx+lgy=lg12⇒xy=12⇒2xy=24
x²+y²+2xy=49
(x+y)²=49
a)x+y=-7
x=-y-7
-y²-7y=12
y²+7y+12=0
y1+y2=-7 U y1*y2=12
y1=-3 не удов усл
y2=-4 не удов усл
б)x+y=7
x=7-y
7y-y²=12
y²-7y+12=0
y1+y2=7 U y1*y2=12
y1=3⇒x1=4
y2=4⇒x2=3
(4;3);(3;4)
4
x>0 y>0
{log(0,5)xy=-1⇒xy=2
{x=3+2y
3y+2y²-2=0
D=9+16=25
y1=(-3-5)/4=-2 не удов усл
у2=(-3+5)/4=0,5⇒х=4
(4;0,5)