Пусть U = ℕ, P = {простые числа, меньшие 25} и Q={2, 4, 5, 11, 12, 15}. a) Выпишите элементы множеств P; b) Найдите P ⋂ Q; c) Найдите P∪Q; d) Проверьте выполнение равенства по действии
Решение 1) y =x^3+x-6 y=x^3 Находим производную по формуле степенной функции x∧n = n*x∧(n-1) получаем: 3х∧2 производная от х равна 1 Производная от 6 как от постоянной равна 0 Получаем производную от данной функции: 3х∧2 + 1 2) y= -1/x^3+1/x+1 Вначале преобразуем нашу функцию: у = - х∧(- 3) + х∧(- 1) + 1 Находим производную от ( - х∧(- 3)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4 Находим производную от(х∧(- 1)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: - х∧(-2) = -1/√х Производная от1 как от постоянной равна 0 Получаем производную от данной функции: - 3/х∧4 + -1/√х
Решить уравнение f (x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется
1) y =x^3+x-6
y=x^3 Находим производную по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: 3х∧2
производная от х равна 1
Производная от 6 как от постоянной равна 0
Получаем производную от данной функции:
3х∧2 + 1
2) y= -1/x^3+1/x+1
Вначале преобразуем нашу функцию:
у = - х∧(- 3) + х∧(- 1) + 1
Находим производную от ( - х∧(- 3)) по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4
Находим производную от(х∧(- 1)) по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: - х∧(-2) = -1/√х
Производная от1 как от постоянной равна 0
Получаем производную от данной функции:
- 3/х∧4 + -1/√х
Объяснение:
Решить уравнение f (x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется