Пять шариков случайно разбрасываются по пяти лункам, каждый шарик попадает в ту или другую лунку с одинаковой вероятностью и независимо от других (в одну лунку может попадать любое число шариков). найти: 1) вероятность того, что в каждой лунке окажется по одному шарику; 2) в одной из лунок окажется три шарика, в другой - два, а в трех остальных шариков не будет.
Берем производную:
y' = 10x
10x = 0
x = 0
Смотрим как ведет себя производная в районе этой точки
При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0)
При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность)
Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение
Свое наибольшее значение функция достигает на одном из концов отрезка:
y(-1) = 20
y(2)=35 - наибольшее значение функции на отрезке [-1;2\
Объяснение:
Чтобы число делилось на 4, две последние цифры должны образовывать число кратное 4, т.е. последняя цифра всегда четная и равна 0, 4 или 8 (т.к. только 60, 64, 68 кратны 4), а значит среди остальных звездочек имеется только одна четная и три нечетных цифры.
Чтобы число делилось на 3, сумма всех его цифр должна быть кратна 3. Заметим, что цифры 0, 4, 8 дают остатки при делении на 3 соответственно 0, 1 и 2, поэтому, какие бы цифры не стояли вместо первых четырех звездочек, т.е. какой бы не была сумма всех цифр числа без последней цифры, только одна из цифр 0, 4, 8 подходит в качестве последней. Например, если сумма всех цифр числа без последней цифры имеет остаток от деления на 3 равный 2, то чтобы число делилось на 3, в качестве последней цифры подойдет только 4, т.к. у 4 остаток при делении на 3 равен 1. Аналогично, если сумма всех цифр, кроме последней, имеет остаток 1, то в качестве последней цифры подойдет только 8 и если эта сумма кратна 3, то последняя цифра - 0. Таким образом, общее количество вариантов равно количеству вариантов для первых четырех звездочек, а последняя звездочка для каждого такого варианта определяется однозначно.
Итак, каждая звездочка из первых четырех может принимать пять значений. Если она четная, то это 0,2,4,6,8 и если она нечетная, то это 1,3,5,7,9. Также, мы знаем, что четная звездочка только одна, т.е. она может занимать одну из 4 позиций. Отсюда общее количество искомых чисел равно 4*5⁴=2500.