Условие: Пусть длина окружности меньшего колеса это х м, Тогда длина окружности большего колеса это (х+1) м Количество оборотов меньшего колеса (y+20) Количество оборотов меньшего колеса y
Решение: Составляем систему уравнений: x(y+20)=175 и (x+1)y=175 xy+20x=175 и xy+y=175 Из первого уравнения вычитаем второе: 20х=y Подставляем полученное значение y во второе уравнение: x*20x+20x=175 20x^2+20x-175=0 x^2+x-8,75=0 D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36 x=2,5 (м) - длина окружности меньшего колеса х+1=2,5+1=3,5 (м) - длина окружности большего колеса
Чтобы удовлетворить требуемому условию, нужно объединять числа вида 6n+1 с числами вида 6n+5 (иными словами, числа, дающие остаток 1 при делении на 6, нужно объединять с числами, дающими остаток 5), числа вида 6n+2 с числами вида 6n+4, числа вида 6n+3 с числами вида 6n+3, числа вида 6n с числами вида 6n. Проверим, сколько чисел каждого вида. Для того, чтобы можно было получить нужные пары, чисел вида 6n+1 должно быть столько же, сколько чисел вида 6n+5, и так далее. Поделим 2000 на 6 с остатком, получаем 2000=333·6+2. Таким образом, мы имеем 334 чисел вида 6n+1, 334 чисел вида 6n+2, 333 чисел вида 6n+3, 333 чисел вида 6n+4, 333 чисел вида 6n+5, 333 чисел вида 6n. Вывод: сумма любой пары чисел не может делиться на 6 сразу по четырем причинам: одному числу вида 4n+1 не хватит пары, одному числу вида 4n+2 не хватит пары, чисел вида 6n+3 нечетное число, чисел вида 6n нечетное число. Выбирайте ту причину, которая Вам нравится больше.
Пусть длина окружности меньшего колеса это х м,
Тогда длина окружности большего колеса это (х+1) м
Количество оборотов меньшего колеса (y+20)
Количество оборотов меньшего колеса y
Решение:
Составляем систему уравнений:
x(y+20)=175 и (x+1)y=175
xy+20x=175 и xy+y=175
Из первого уравнения вычитаем второе: 20х=y
Подставляем полученное значение y во второе уравнение: x*20x+20x=175
20x^2+20x-175=0
x^2+x-8,75=0
D=b^2-4ac=1^2-4*1*(-8,75)=1+35=36
x=2,5 (м) - длина окружности меньшего колеса
х+1=2,5+1=3,5 (м) - длина окружности большего колеса
ответ: 2,5м и 3,5м
Чтобы удовлетворить требуемому условию, нужно объединять числа вида 6n+1 с числами вида 6n+5 (иными словами, числа, дающие остаток 1 при делении на 6, нужно объединять с числами, дающими остаток 5), числа вида 6n+2 с числами вида 6n+4, числа вида 6n+3 с числами вида 6n+3, числа вида 6n с числами вида 6n. Проверим, сколько чисел каждого вида. Для того, чтобы можно было получить нужные пары, чисел вида 6n+1 должно быть столько же, сколько чисел вида 6n+5, и так далее. Поделим 2000 на 6 с остатком, получаем 2000=333·6+2. Таким образом, мы имеем 334 чисел вида 6n+1, 334 чисел вида 6n+2, 333 чисел вида 6n+3, 333 чисел вида 6n+4, 333 чисел вида 6n+5, 333 чисел вида 6n. Вывод: сумма любой пары чисел не может делиться на 6 сразу по четырем причинам: одному числу вида 4n+1 не хватит пары, одному числу вида 4n+2 не хватит пары, чисел вида 6n+3 нечетное число, чисел вида 6n нечетное число. Выбирайте ту причину, которая Вам нравится больше.
ответ: не могло