Пусть количество грубых ошибок равно х, а не грубых - у. Перепишем условия задачи, используя это: 1) x≥1/4*(x+y)/*4 4x≥x+y3x≥y 2) 3x=(y+2*24)/5 Так как 3x≥y и 3x=(y+48)/5, то (y+48)/5≥y/*5 y+48≥5y 48≥4y/:4 y≤12 Так как 3x≥y и y=15x-48, тогда: 3x≥15x-48 48≥12x/:12 x≤4 Получается система неравенств x≤4, y≤12. Из этого следует, что x+y≤16. Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 4, а не грубых - 12. Проверим, выполняется ли при этих значениях условие задачи: 15x=y+48, 15*4=12+48, 60=60 Значит, данные значения являются решением данной задачи. Всего учеников было 24, без ошибок напишут 24-12-4=8 человек.
60
Объяснение:
x - скорость 1-го автомобилиста, км/ч.
(x-15) - скорость 2-го автомобилиста на первой половине пути, км/ч.
y - время в пути каждого автомобилиста, ч.
Возьмём весь путь за два (чтобы в дальнейшем не использовать половинки пути, а брать по одной целой).
Система уравнений:
2/x=y
1/(x-15) +1/90=y
2/x=1/(x-15) +1/90
(90+x-15)/(90(x-15)) -2/x=0
(x(75+x)-180(x-15))/(90x(x-15))=0
75x+x²-180x+2700=0
x²-105x+2700=0; D=11025-10800=225
x₁=(105-15)/2=90/2=45 км/ч - ответ не соответствует условию, так как скорость 1-го автомобилиста больше на
54 км/ч: 45-50=-5.
x₂=(105+15)/2=120/2=60 км/ч - скорость 1-го автомобилиста.
Перепишем условия задачи, используя это:
1) x≥1/4*(x+y)/*4
4x≥x+y3x≥y
2) 3x=(y+2*24)/5
Так как 3x≥y и 3x=(y+48)/5, то
(y+48)/5≥y/*5
y+48≥5y
48≥4y/:4
y≤12
Так как 3x≥y и y=15x-48, тогда:
3x≥15x-48
48≥12x/:12
x≤4
Получается система неравенств x≤4, y≤12. Из этого следует, что x+y≤16.
Так как МИНИМАЛЬНОЕ количество человек, написавших диктант без ошибок будет при условии, что каждый ученик допустит по одной ошибке. Наибольшее количество грубых ошибок равно 4, а не грубых - 12.
Проверим, выполняется ли при этих значениях условие задачи:
15x=y+48,
15*4=12+48,
60=60
Значит, данные значения являются решением данной задачи. Всего учеников было 24, без ошибок напишут 24-12-4=8 человек.