Пусть х, у (км/ч) - скорости велосипедиста и мотоциклиста соответственно, тогда за 1 мин = 1/60 ч они преодолевают расстояния, равные х/60 и у/60 (км) - соответственно, а путь 120 км проделывают за 120/х и 120/у (ч) - соответственно. По условию за 1 мин велосипедист проехал на 600 м = 3/5 км меньше и расстояние 120 км - за время на 3 ч большее. Составим и решим систему: у/60 - х/60 = 3/5; 120/х - 120/у = 3 у - х = 36; 40/х - 40/у = 1 х = у - 36; 40/(у - 36) - 40/у = 1 х = у - 36; 40у - 40(у - 36) = у(у - 36) х = у - 36; 40у - 40у + 1440 = у^2 - 36у х = у - 36; у^2 - 36у - 1440 = 0 х = у - 36; у^2 - 36у + 324 - 1764 = 0 х = у - 36; (у - 18)^2 - 42^2 = 0 х = у - 36; (у - 18 - 42)(у - 18 + 42) = 0 х = у - 36; (у - 60)(у + 24) = 0 х = у - 36; у1 = 60 км/ч, у2 = -24 - второе значение у противоречит условию (скорость не должна быть отрицательной) х = 60 - 36 = 24 км/ч, у = 60 км/ч. ответ: скорость велосипедиста 24 км/ч, мотоциклиста - 60 км/ч.
В тех интервалах, в которых ф-ция монотонна, первая производная сохраняет знак.Если знак "+2, то ф-ция монотонно возрастающая, а если знак "-", то ф-ция монотонно убывающая.
у=х³/3-5х²/2+6х-19 ( в условии у вас ошибка, во втором слагаемом не х³,а х²)
у¹=3х²/3-5*2х/2+6=х²-5х+6=0
х₁=2, х₂=3
Проверим три интервала: (-∞;2) , (2;3) , (3;+∞).
Знаки производной в 1-ом и 3-ем интервалах "+", а во втором интервале производная отрицательна ⇒ Функция возрастает на (-∞;2) и (3;+∞). Функция убывает при х∈(2;3).
Пусть х, у (км/ч) - скорости велосипедиста и мотоциклиста соответственно,
тогда за 1 мин = 1/60 ч они преодолевают расстояния, равные
х/60 и у/60 (км) - соответственно,
а путь 120 км проделывают за
120/х и 120/у (ч) - соответственно.
По условию за 1 мин велосипедист проехал на 600 м = 3/5 км меньше
и расстояние 120 км - за время на 3 ч большее.
Составим и решим систему:
у/60 - х/60 = 3/5; 120/х - 120/у = 3
у - х = 36; 40/х - 40/у = 1
х = у - 36; 40/(у - 36) - 40/у = 1
х = у - 36; 40у - 40(у - 36) = у(у - 36)
х = у - 36; 40у - 40у + 1440 = у^2 - 36у
х = у - 36; у^2 - 36у - 1440 = 0
х = у - 36; у^2 - 36у + 324 - 1764 = 0
х = у - 36; (у - 18)^2 - 42^2 = 0
х = у - 36; (у - 18 - 42)(у - 18 + 42) = 0
х = у - 36; (у - 60)(у + 24) = 0
х = у - 36; у1 = 60 км/ч, у2 = -24 - второе значение у противоречит условию
(скорость не должна быть отрицательной)
х = 60 - 36 = 24 км/ч, у = 60 км/ч.
ответ: скорость велосипедиста 24 км/ч, мотоциклиста - 60 км/ч.
В тех интервалах, в которых ф-ция монотонна, первая производная сохраняет знак.Если знак "+2, то ф-ция монотонно возрастающая, а если знак "-", то ф-ция монотонно убывающая.
у=х³/3-5х²/2+6х-19 ( в условии у вас ошибка, во втором слагаемом не х³,а х²)
у¹=3х²/3-5*2х/2+6=х²-5х+6=0
х₁=2, х₂=3
Проверим три интервала: (-∞;2) , (2;3) , (3;+∞).
Знаки производной в 1-ом и 3-ем интервалах "+", а во втором интервале производная отрицательна ⇒ Функция возрастает на (-∞;2) и (3;+∞). Функция убывает при х∈(2;3).