Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
2) log₇98 - log₇2 = log₇(98/2) = log₇49 = 2
3) log₂5-log₂35 + log₂56 = log₂(5/35) + log₂56 = log₂(log₂8 = 3
4) log₁/₃5 - log₁/₃5 + log₁/₃ 9 = log₁/₃9 = -2
1) lg4 + lg250= lg(4*250) = lg1000 = 3
2) log₂6 - log₂ = log₂( = log₂32 = 5
3) (log₁₂4 + log₁₂36)² = (log₁₂144)² = 2² = 4
4) lg13 - lg 130 = lg = lg = -1
5) (log₂13-log₂52)⁵ = (log₂)⁵ = (log₂)⁵ = (-2)⁵ = -32
6) (log₀.₃9 - 2log₀.₃10)⁴ = (log₀.₃9 - log₀.₃100)⁴ = (log₀.₃)⁴ = (log₀.₃0.09)⁴ = 2⁴ = 16
1) log₃x = -1
x = 3⁻¹ = 1/3
2) log₂x = -5
x = 2⁻⁵ = 1/32
3) log₃x = 2
x = 3² = 9
4) log₄x = 3
x = 4³ = 64
5) log₄x = -3
x = 4⁻³ = 1/64
6) log₇x = 0
x = 7° = 1
7) log₁/₇x = 1
x = 1/7
8) log₁/₂x = -3
x = (1/2)⁻³ = 8
1) log₂log₂log₃81 = log₂log₂4 = log₂2 = 1
2) log₂log₃log₁/₃(1/27) = log₂log₃3 = log₂1 = 0
3) log₅125 = 3 = 2
4) log₄log₃81 = log₄4 = 1
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.