Распишите , подробное получение этого выражения. Откуда тут взялась девятка? Откуда вылезла семёрка? Куда исчезла шестерка? Мой гуманитарный мозг ошалел от таких преобразований.
Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
62. Пусть х- меньшая сторона треугольника, тогда 2х- вторая сторона треугольника и (х+3)- третья сторона треугольника
х+2х+х+3=31 ;
4х=31-3;
х=28:4;
х=7( см)- 1 сторона
2х=2*7=14(см)- вторая сторона
х+3=7+3=10(см) - третья сторона
67.
Пусть в тренаженый зал ходит х старшекласниц, тогда (х+5) старшекласниц ходят на шейпинг и 2х- на аквааэробику.
По условию задачи составим уравнение:
х+х+5+2х=33;
4х=33-5;
х=28:4;
х=7 (ст.) - в тренажерный зал
х+5=7+5=12 (ст.) - на шейпинг
2*7=14 ( ст.) -на аквааэробику
69. Пусть х - скорость второго велосипедиста, а (х+3) - скорость первого. Тогда (х+х+3)- совместная скорость, с которой оба проехали путь до встречи за 40 минут
Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:
Сумма корней приведённого квадратного уравнения x2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.
То есть, если имеется приведённое квадратное уравнение x2 + bx + c = 0, а его корнями являются числа x1 и x2, то справедливы следующие два равенства:
Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.
Объяснение:
62. 7см, 14см, 10см
67. 7 девочек - в тренажерный зал
12 девочек - на шейпинг
14 девочек -на аквааэробику
69.
15 км/ч и 12 км/ч
62. Пусть х- меньшая сторона треугольника, тогда 2х- вторая сторона треугольника и (х+3)- третья сторона треугольника
х+2х+х+3=31 ;
4х=31-3;
х=28:4;
х=7( см)- 1 сторона
2х=2*7=14(см)- вторая сторона
х+3=7+3=10(см) - третья сторона
67.
Пусть в тренаженый зал ходит х старшекласниц, тогда (х+5) старшекласниц ходят на шейпинг и 2х- на аквааэробику.
По условию задачи составим уравнение:
х+х+5+2х=33;
4х=33-5;
х=28:4;
х=7 (ст.) - в тренажерный зал
х+5=7+5=12 (ст.) - на шейпинг
2*7=14 ( ст.) -на аквааэробику
69. Пусть х - скорость второго велосипедиста, а (х+3) - скорость первого. Тогда (х+х+3)- совместная скорость, с которой оба проехали путь до встречи за 40 минут
40минут= часа
18=(х+х+3)*2/3;
2х+3=18*3/2;
2х=27-3;
х=24:2;
х=12 (км/ч)- скорость второго велосипедиста
х+3=12+3=15(км/ч)- скорость первого велосипедиста