Рассчитайте скорость оборота денежной массы, если известно, что объем денежной массы составляет 30 млрд. руб., количество товаров в обороте 5 000 единиц, а стоимость единицы товара составляет 30 000 рублей.
0 - не простое число, попарные разности простые => никакая разность не равна 0 => все числа в тройке различны.
Единственное четное простое число - 2. Тогда в тройке по крайней мере 2 нечетных числа => по крайней мере одна разность (как раз этих чисел) будет четной. Т.к. все попарные разности простые, то эта разность равна 2. => тройка имеет вид (a; b; b+2), а разности - |a-b|, |a-b-2|, |b-b-2|=2.
1) Все числа тройки нечетные => все разности четные => все равны 2 => |a-b| = |a-b-2| = 2
a-b=-2 => |a-b-2|=4 - не подходит
a-b=2 => |a-b-2|=0 - не подходит
2) Значит в тройке ровно 2 нечетных числа.
Если b=2, то b+2=4 - не простое.
Если b+2=2, то b=0 - не простое
Тогда a=2 => тройка имеет вид (2; b; b+2), а разности - |2-b|=b-2, |2-b-2|=b, |b-b-2|=2.
Значит b-2, b и b+2 простые. Из чисел такого вида хотя бы одно кратно 3 (b≡0(mod 3)=>b кратно 3, b≡1(mod 3)=>b+2 кратно 3, b≡2(mod 3)=>b-2 кратно 3). Значит какое-то из них равно 3
Четность функции allcalc.ru
parity f(x)=
x^3/(4(2-x)^2 )
Вычислить
Основные функции
\left(a=\operatorname{const} \right)
x^{a}: x^a
модуль x: abs(x)
\sqrt{x}: Sqrt[x]
\sqrt[n]{x}: x^(1/n)
a^{x}: a^x
\log_{a}x: Log[a, x]
\ln x: Log[x]
\cos x: cos[x] или Cos[x]
\sin x: sin[x] или Sin[x]
\operatorname{tg}x: tan[x] или Tan[x]
\operatorname{ctg}x: cot[x] или Cot[x]
\sec x: sec[x] или Sec[x]
\operatorname{cosec} x: csc[x] или Csc[x]
\arccos x: ArcCos[x]
\arcsin x: ArcSin[x]
\operatorname{arctg} x: ArcTan[x]
\operatorname{arcctg} x: ArcCot[x]
\operatorname{arcsec} x: ArcSec[x]
\operatorname{arccosec} x: ArcCsc[x]
\operatorname{ch} x: cosh[x] или Cosh[x]
\operatorname{sh} x: sinh[x] или Sinh[x]
\operatorname{th} x: tanh[x] или Tanh[x]
\operatorname{cth} x: coth[x] или Coth[x]
\operatorname{sech} x: sech[x] или Sech[x]
\operatorname{cosech} x: csch[x] или Csch[е]
\operatorname{areach} x: ArcCosh[x]
\operatorname{areash} x: ArcSinh[x]
\operatorname{areath} x: ArcTanh[x]
\operatorname{areacth} x: ArcCoth[x]
\operatorname{areasech} x: ArcSech[x]
\operatorname{areacosech} x: ArcCsch[x]
[19.67] =19: integral part of (19.67) - выделяет целую часть числа (integerPart)
Объяснение:
0 - не простое число, попарные разности простые => никакая разность не равна 0 => все числа в тройке различны.
Единственное четное простое число - 2. Тогда в тройке по крайней мере 2 нечетных числа => по крайней мере одна разность (как раз этих чисел) будет четной. Т.к. все попарные разности простые, то эта разность равна 2. => тройка имеет вид (a; b; b+2), а разности - |a-b|, |a-b-2|, |b-b-2|=2.
1) Все числа тройки нечетные => все разности четные => все равны 2 => |a-b| = |a-b-2| = 2
a-b=-2 => |a-b-2|=4 - не подходит
a-b=2 => |a-b-2|=0 - не подходит
2) Значит в тройке ровно 2 нечетных числа.
Если b=2, то b+2=4 - не простое.
Если b+2=2, то b=0 - не простое
Тогда a=2 => тройка имеет вид (2; b; b+2), а разности - |2-b|=b-2, |2-b-2|=b, |b-b-2|=2.
Значит b-2, b и b+2 простые. Из чисел такого вида хотя бы одно кратно 3 (b≡0(mod 3)=>b кратно 3, b≡1(mod 3)=>b+2 кратно 3, b≡2(mod 3)=>b-2 кратно 3). Значит какое-то из них равно 3
b-2=3 => b=5, b+2=7 - простые => (2; 5; 7)
b=3 => b-2=1 - не простое
b+2=3 => b=1 - не простое
ответ: (2; 5; 7)