Две хлопкоуборочные машины, работая одновременно, могут собрать урожай с поля на 8 дней быстрее, чем одна первая машина, и на 2 дня быстрее, чем одна вторая машина. За сколько дней может собрать урожай каждая машина, работая отдельно?
1 - весь урожай.
x - время уборки урожая двумя машинами (дни).
x + 8 - время уборки урожая первой машиной (в днях).
х + 2 - время уборки урожая второй машиной (в днях).
По условию задачи уравнение:
1/(x + 8) + 1/(x + 2) = 1/x
Умножить все части уравнения на х(х + 8)(х + 2), чтобы избавиться от дробного выражения:
х(х + 2) + х(х + 8) = (х + 8)(х + 2)
х² + 2х + х² + 8х = х² + 2х + 8х + 16
2х² + 10х = х² + 10х + 16
2х² + 10х - х² - 10х = 16
х² = 16
х = 4 (дня) - время уборки урожая двумя машинами.
4 + 8 = 12 (дней) - время уборки урожая первой машиной.
4 + 2 = 6 (дней) - время уборки урожая второй машиной.
Произведение 16 можно составить из разных натруральных чисел только двумя
I.
II.
Поскольку это должны быть минимальные числа, то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу, т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
В решении.
Объяснение:
Две хлопкоуборочные машины, работая одновременно, могут собрать урожай с поля на 8 дней быстрее, чем одна первая машина, и на 2 дня быстрее, чем одна вторая машина. За сколько дней может собрать урожай каждая машина, работая отдельно?
1 - весь урожай.
x - время уборки урожая двумя машинами (дни).
x + 8 - время уборки урожая первой машиной (в днях).
х + 2 - время уборки урожая второй машиной (в днях).
По условию задачи уравнение:
1/(x + 8) + 1/(x + 2) = 1/x
Умножить все части уравнения на х(х + 8)(х + 2), чтобы избавиться от дробного выражения:
х(х + 2) + х(х + 8) = (х + 8)(х + 2)
х² + 2х + х² + 8х = х² + 2х + 8х + 16
2х² + 10х = х² + 10х + 16
2х² + 10х - х² - 10х = 16
х² = 16
х = 4 (дня) - время уборки урожая двумя машинами.
4 + 8 = 12 (дней) - время уборки урожая первой машиной.
4 + 2 = 6 (дней) - время уборки урожая второй машиной.
Проверка:
1/6 + 1/12 = 1/4
1/4 = 1/4, верно.
только двумя
I.
II.
Поскольку это должны быть минимальные числа,
то остальные числа могут быть только больше.
I* В первом случае остальные числа могут быть только больше т.е.:
Но произведение даже
И произведение любых двух чисел, больших, чем каждое – будет, очевидно, больше чем т.е. больше а значит, при выборе минимальных чисел в виде и – подобрать остальные числа невозможно.
II* Во втором случае остальные числа могут быть только больше т.е.:
Рассмотрим разложение на множители числа
На подойдут только числа, большие восьми и не равные друг другу,
т.е. и
Таким образом Вася выбрал числа и
В диапазон между и Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы
Между и никаких натуральных чисел нет.
В диапазон между и Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы
Сумма всех Васиных чисел:
О т в е т :