Расстояние между двумя пристанями равно 216 км. Из них одновременно навстречу друг другу вышли две лодки, скорости которых в стоячей воде равны. Через 3 ч. лодки встретились. Скорость течения реки равна 3 км/ч. Скорость лодки в стоячей воде равна
км/ч.
Сколько километров до места встречи пройдёт лодка, плывущая по течению?
км.
Сколько километров до места встречи пройдёт лодка, плывущая против течения?
км.
Ввести новую переменную
t = 3x² - 4
t² - 4t - 5 = 0
а = 1; b = -4; c = -5
D = b² - 4ac = (-4)² - 4 * 1 * (-5) = 16 + 20 = 36
t₁ = - b + √D = - ( - 4) + √36 = 4 + 6 = 5
2a 2 * 1 2
t₂ = - b - √D = - ( - 4) - √36 = 4 - 6 = -1
2a 2 * 1 2
При t₁ = 5,
t = 3x² - 4
5 = 3x² - 4
3x² = 9
x² = 3
x₁ = -√3, x₂ = √3
При t₂ = -1,
t = 3x² - 4
-1 = 3x² - 4
3x² = 3
x² = 1
x₁ = -1, x₂ = 1
ответ: -√3, -1, 1, √3
Объяснение:
1) (a-5)(a+3) < (a+1)(a-7)
a^2-5a+3a-15 < a^2+a-7a-7
-2a-15 < - 6a-7
4a < 8
a < 2
Это неравенство верно вовсе не при любых а, а только при а меньше 2.
2) [5x+2] <= 3
Видимо, квадратные скобки это модуль. Неравенство распадается на два:
а) 5x+2 >= - 3
5x >= - 5
x >= - 1
б) 5x+2 <= 3
5x <= 1
x <= 1/5
Целые решения: - 1; 0
3) Пусть одна сторона равна 5 см, а другая больше неё в 4 раза, то есть 20 см.
Тогда периметр равен 2*(5+20) = 2*25 = 50 см.
Если первая сторона меньше 5 см, то вторая меньше 20 см, а периметр меньше 50 см.