Расстояние между городами A и B - 470 км. Через 3 часа после того, как первая машина выехала из города A, вторая машина выехала из города B в обратном направлении со скоростью менее 10 км / ч. Если машины встречаются в 350 км от города А, найдите скорость первой машины.
Объяснение:
Линейное уравнение – уравнение, сводящееся к виду ax+b=0, где a≠0,b – числа. Линейное уравнение всегда имеет единственное решение x=−ba. Квадратное уравнение – уравнение, сводящееся к виду ax2+bx+c=0, где a≠0,b,c – числа. Выражение D=b2−4ac называется дискриминантом квадратного уравнения. Квадратное уравнение может иметь не более двух корней: ∙ если D>0, то оно имеет два различных корня и x1=−b+D2aиx2=−b−D2a ∙ если D=0, то оно имеет один корень (иногда говорят, что два совпадающих) x1=x2=−b2a ∙ если D<0, то оно не имеет корней. ▸ Теорема Виета для квадратного уравнения: Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения x1+x2=−ba а произведение x1⋅x2=ca ▸ Если квадратное уравнение: ∼ имеет два корня x1 и x2, то ax2+bx+c=a(x−x1)(x−x2). ∼ имеет один корень x1 (иногда говорят, что два совпадающих), то ax2+bx+c=a(x−x1)2. ∼ не имеет корней, то квадратный трехчлен ax2+bc+c никогда не может быть равен нулю. Более того, он при всех x строго одного знака: либо положителен, либо отрицателен. ▸ Полезные формулы сокращенного умножения: x2−y2=(x−y)(x+y)(x+y)2=x2+2xy+y2(x−y)2=x2−2xy+y2 Ознакомиться с полной теорией
1) a³ + 8b³=a³+(2b)³=(a+b)(a²-ab+b²)
2) x²y – 36y³=y(x²- (6y)²)=y(x-6y)(x+6y)
3) -5m² + 10mn + 5n²=-5(m²-2mn-n²)
Возможно ошибка в условии:
5m² + 10mn + 5n²=5(m²+2mn+n²)=5(m+n)²
4) 4ab – 28b + 8a – 56=4b(a-7)+8(a-7)=(4b+8)(a-7)=4(b+2)(a-7)
5) a⁴ – 81=a⁴-3⁴=(a²-3²)(a²+3²)=(a-3)(a+3)(a+9)
2. Упростите выражение:
а(а+2)(а – 2) – (а – 3)(а2 + 3а +9)=a(a²-4)-(a³-3³)=a³-4a²-a³+27=-4a²+27
3. Разложите на множители:
1) х – 3у + х² – 9у²=(x-3y)+(x-3y)(x-3y)=(x-3y)(x+3y+1)
2) 9m² + 6mn +n² – 25=(3m+n)²-5²=(3m+n-5)(3m+n+5)
3) ab⁵ – b⁵ – ab³ +b³=b⁵(a-1)-b³(a-1)=b³(b²-1)(a-1)=b³(b-1)(b+1)(a-1)
4) 1 – x² +10 xy – 25y²=1-(x²-10xy+25y²)=1²-(x-5y)²=(1-x+5y)(1+x-5y)
4. Решите уравнение:
1) 3х³–12х=0
3x²(x-4)=0
x₁=0
x-4=0
x₂=4
2) 49х³ +14х² +х=0
x((7x)²+14x+1)=0
x(7x+1)=0
x₁=0
7x+1=0
7x=-1
x₂=-1/7
3) х³ – 5х²–х +5=0
x(x²-1)-5(x²-1)=0
(x-5)(x²-1)=0
(x-5)(x-1)(x+1)=0
x-5=0
x₁=5
x-1=0
x₂=1
x+1=0
x=-1
5. Докажите, что значение выражение 36 +53 делится нацело на 14.
36+53=(14*2+8)+(14*3+11)=14*5+19=14*6+5 на 14 не делиться
Или проще:
36+53=89 нечетное на 14 (четное) нацело делиться не может
6. Известно, что a – b = 6, ab=5. Найдите значение выражения (a+b)²
(a+b)²=a²+2ab+b²=(a²-2ab+b²)+4ab=(a-b)²+4ab=6²+4*5=36+20=56