Расстояние между городами А и В равно 300 км. Из города А выехал автобус со скоростью 48 км/ч. Одновременно навстречу ему из города В выехал велосипе- дист со скоростью 12 км/ч. Каким будет расстояние между велосипедистом и автобусом через время t, если известно, что оно меньше времени их встречи? Через сколько часов они встретятся?
Объяснение:
Проверим случай p=5, уйдет квадратичная часть, но линейная останется, значит неравенство не будет выполняться для всех x.
При p не равном 5 график левой части неравенства представляет собой параболу, для того, чтобы неравенство было верно для любого x вся парабола должна лежать ниже оси абсцисс, т. е. ветви вниз(p-5<0) и D(дискриминант)<0.
D1=(2p-4)^2-4(p-5)(-p-3)=8p^2-24p-44<0
2p^2-6p-11<0
D2=36+88=124
p1=(3-sqrt(31))/2
p2=(3+sqrt(31))/2
D1<0 при
Эти значения p меньше пяти(т.е. ветви направлены вниз). Заносим их в ответ.
Точки пересечения с нулем, достаточно просто найти:
Экстремумы:
Прикинув график, мы примерно понимаем, что 0 это ноль и экстремум, одновременно, а между 0 и 3, также есть экстремум в двух(Это можно было бы и утверждать по теореме Ролля)
А теперь добавим наш параметр а, т.к. а это конкретное число, это никак не влияет на график по правилу элементарных преобразований, она либо опускать его будешь вниз, либо поднимать вверх.
Т.к. а отрицательно, то график будет подниматься(перед а, знак минус)
Нужно найти такое а, при котором второй экстремум будет обращаться в ноль, который (2).
Составим уравнение:
8-3*4-a=0;
-4-a=0; a = -4. Получаем, что ровно два корня, при: