Расстояние от пристани A до пристани B по течению реки катер за 3 ч., а от пристани A до пристани B против течения — за 3,5 ч.
Обозначив собственную скорость катера — a км/ч, скорость течения реки — m км/ч, составь математическую модель данной ситуации.
a) Найди скорость катера по течению, скорость катера против течения.
b) Найди расстояние, пройденное катером по течению.
с) Найди расстояние, пройденное катером против течения.
d) Сравни найденные в пункте c расстояния. Результат сравнения запиши в виде математической модели.
ответ:
a) скорость катера по течению реки — км/ч; против течения реки — ,,, км/ч;
b) расстояние, пройденное катером по течению: ,,, км;
с) расстояние, пройденное катером против течения: ,,, км;
d) найденные расстояния будут (запиши прилагательное) ,,, , т. е. ,,, х (,,, + ,,,) ,,, ,,, х (,,, - ,,,) км.
В наше время неотъемлемым является знание нашего Ведь в какой-то мере, не зная нашего мы бы не знали кто мы. На протяжении веков формировалась культура, обычаи, происходили различные события, которые очень сильно повлияли на настоящее. В разные времена существовали свои летописцы, они записывали происходящие события, для себя, для людей и для потомков. Современному человеку интересны летописные сказания тем, что в них записаны данные, о которых мы бы не могли узнать, например: различные даты, войны, культурные просветители и деятели тех лет.
1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.
D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.
2) Найди корни квадратного уравнения x²+7x+12=0.
По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.
3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.
Рациональным будет метод введения новой переменной.
Пусть 5x−15 = t, тогда имеем:
2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1
t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.
Возвращаемся к замене:
5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.
5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.
ответ: 3,4; 3,3.
4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.
x−2,1 = 0 или x−31 = 0.
х₁ = 2,1 х₂ = 31.
ответ: 2,1; 31.
5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).
Полученная дробь: (х - 4)/(х + 6).
6)Сократи дробь (5x²−32x+12)/(x³−216).
5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.
x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4
Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =
= (5x - 2)/(x² + 6x + 36).
7) Разложи на множители квадратный трехчлен x² + 8x + 15.
x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.
имеем, x² + 8x + 15 = (x + 3)(x + 5).