растояние от солнца до земли 149 500 000 000. а) запиши расстояние от солнца до земли в стандартном виде ( в метрах) . b) запиши расстояние от солнца до земли в стандартном виде ( в метрах) , указав значащую часть и его порядок . с) расстояние от солнца до земли , записанное в метрах переведи в км . d) за сколько секунд свет достигает Земли ? ( скорость света 3•10^8 м/с )
х²-6х=а
а²-3а-88≤0
а1+а2=3 и а1*а2=-88⇒а1=11 и а2=-8
+ _ +
-8 11
х²-6х≥-8 и х²-6х≤11
х²-6х+8≥0 х1+х2=6 и х1*х2=8⇒х1=2 и х2=4
+ _ +
2 4
х∈(-≈;2] U [4;≈)
x²-6x-11≤0
D=36+44=80 √D=4√5
x1=(6-4√5)/2=3-2√5
x2=(6+4√5)/2=3+2√5
+ _ +
3-√5 3+√5
x∈[3-√3;3+√5]
ответ:х∈(-≈;-8]U[3-√5;3+√5]U[11;≈)
1. Если а=-1, то это уравнение линейное. 4х-12=0 , и иметь двух корней не может.
2. Если а≠-1, имеем квадратное уравнение относительно х.
Для того, чтобы число ноль было меньше корней квадратичной функции у=ах²+вх+с, и эти корни были различными, необходимо и достаточно выполнение следующей системы неравенств: 1) дискриминант данного уравнения д>0, 2)а*у(0) больше или равно 0; у(0)=(а+1)*0² -4а*0+4*(а-2)=4*(а-2); 3) 0<-в/2а.
1)д=16а²-4*4(а+1)*(а-2)=16*(а²-(а²-2а+а-2))=16(а²-а²+2а-а+2)=16*(а+2);а+2>0;а>-2
2) (а+1)*4*(а-2)≥0; но при этом а ≠-1, решаем методом интервалов,
_-12
+ - + Решением будет (-∞;-1 ) ∪ [2;+∞)
3) 4а/2(а+1) >0; решаем методом интервалов
__-10___
+ - + Решением будет (-∞;-1 ) ∪ (0;+∞)
Итак, рассматривая эти условия одновременно, найдем их пересечение, что и будет являться ответом.
Это (-2; -1)∪ [2;+∞)