Например, 154 = 11*14 Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9. Или 847 = 11*77 8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9. Нашел простым подбором, это было нетрудно. А вот найти все решения через решение уравнений - трудно. Если число 100a + 10b + c, то должна выполняться одна из систем: { a + c = b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = b { a^2 + b^2 + c^2 = 9k + 6 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 3 ИЛИ { a + c = 11 + b { a^2 + b^2 + c^2 = 9k + 6
д) (1,1; 1,8)
Объяснение:
Подберём интервал с возведения в квадрат, так как если
0 ≤ a < √3 < b то верно и
a² < 3 < b² (***).
а) (0; 1,1) ⇒ 0²=0 и 1,1²=1,21, не выполняется второе неравенство в (***);
б) (-0,2; 1,4) ⇒ (-0,2)²=0,04 и 1,4²=1,96, не выполняется второе неравенство в (***);
в) (1; 1,5) ⇒ 1²=1 и 1,5²=2,25, не выполняется второе неравенство в (***);
г) (0; 1,7) ⇒ 0²=0 и 1,7²=2,89, не выполняется второе неравенство в (***);
д) (1,1; 1,8) ⇒ 1,1²=1,21 и 1,8²=3,24, выполняются все неравенства в (***):
1,21 < 3 < 3,24.
Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9.
Или 847 = 11*77
8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9.
Нашел простым подбором, это было нетрудно.
А вот найти все решения через решение уравнений - трудно.
Если число 100a + 10b + c, то должна выполняться одна из систем:
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 6
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 6