В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Zzzasha
Zzzasha
04.01.2023 04:02 •  Алгебра

Разложи на множители: 1z2+2zy+1y2.
Известно, что один множитель разложения равен z + y.

Найди другие (другой) множители разложения:

Показать ответ
Ответ:
ldudin
ldudin
24.05.2020 19:26
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 1)^2*(x + 2) = 0 
(x - 1)^2 = 0 
x - 1 = 0 
x = 1 

x + 2 = 0 
x = - 2

2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1 
x₁ = 1 
x₂= - 1;

x - 3 = 0 
x₃ = 3 

3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0 
x = 4 

x - 3 = 0
x = 3 

4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0

x^2 = 4 
x₁ = 2;
x₂ = - 2

x + 1 = 0 
x₃ = - 1 
0,0(0 оценок)
Ответ:
sev200684
sev200684
05.08.2020 04:50
Пусть в силу условия
a+b=x^2 (1)
ab=y^2 (2)
где х, y - некоторые натуральные числа

Предположим что b \geq a
тогда из второго соотношения (2) следует что
b=ak^2
где k - некоторое натуральное число

откуда
|16a-9b|=|16a-9ak^2|=|a(16-9k^2)|=\\\\|a||16-9k^2|=a|16-9k^2|
а значит число |16a-9b| сложное если
|16-9k^2| \neq 1
и a \neq 1

Рассмотрим варианты
1) a=1
b+1=x^2
b=y^2
что невозможно - два последовательных натуральных числа не могут быть квадратами натуральных чисел
(доказательство єтого факта
(b+1)-b=x^2-y^2
1=(x-y)(x+y)
1=x-y
1=x+y
=>x=1; y=0
)
2) 16-9k^2=1
15=9k^2
5=3k^2
=> k - ненатуральное -- невозможно
3) 16-9k^2=-1
17=9k^2
=> k - ненатуральное - невозможно
тем самым окончательно доказали,что исходное утверждение верно.

Случай когда a 
Учитывая симметричность выражений a+b=b+a, ab=ba
доказывается аналогично.
Доказано
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота