Условные обозначения: <= -меньше либо равно >= - больше либо равно Pi - число Пи
-1 <= cos(3x)<=1 Решаем систему: cos(3x)<=1, cos(3x)>=-1; Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, .. Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, .. Система примет вид: 3x <= 2*Pi*n, 3x >= Pi + 2*Pi*n; Итого, что касается косинуса: x <= (2/3)*Pi*n, x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
ОДЗ : х² - 5х - 23 ≥ 0 2х² - 10х - 32 ≥ 0 Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку. Подставить корни в систему неравенств или подставить корни в уравнение
Так как 2х²-10х-32=2(х²-5х-16) то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23 x²-5x-16=t+23-16=t+7
Уравнение примет вид √t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат При этом правая часть должна быть положительной или равной 0 ( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11 Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
Условные обозначения:
<= -меньше либо равно
>= - больше либо равно
Pi - число Пи
-1 <= cos(3x)<=1
Решаем систему:
cos(3x)<=1,
cos(3x)>=-1;
Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, ..
Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, ..
Система примет вид:
3x <= 2*Pi*n,
3x >= Pi + 2*Pi*n;
Итого, что касается косинуса:
x <= (2/3)*Pi*n,
x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
... 0000
(2/3)*Pi(Pi/3) + (2/3)*Pi (4/3)*Pi (2*Pi)/3 + (4/3)*Pi
n=1.n=2
График всей функции будет поднят по оси Y на 2
2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение
Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод замены переменной
х²-5х-23=t ⇒ x²-5x=t+23
x²-5x-16=t+23-16=t+7
Уравнение примет вид
√t + √2·(t+7)=5
или
√2·(t+7) = 5 - √t
Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
( (5 - √t)≥0 ⇒√ t ≤ 5 ⇒ t ≤ 25)
2·( t + 7) = 25 - 10 √t + t
или
10·√t = 25 + t - 2t - 14
10·√t = 11 - t
Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0 t ≤ 11
Получаем уравнение
100 t = 121 - 22 t + t², при этом t ≤ 11
t² - 122 t + 121 = 0
D=122²-4·121=14884 - 484 = 14400=120
t₁=(122-120)/2= 1 или t₂= (122+120)/2 = 121 не удовлетворяет условию ( t ≤ 11)
возвращаемся к переменной х:
х² - 5х - 23 = 1
х² - 5х - 24 = 0
D=25+96=121=11²
x₁=(5-11)/2=-3
х₂=(5+11)/2=8
Проверка
х = - 3 √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно 1+4=5
х = 8 √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно 1+4=5
ответ. х₁=-3 х₂=8