В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.
Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.
Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах
Объём работы положим равным единице, скорость (производительность) первого равна v1, второго v2. Условие про разницу в один день: (1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2: 6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.
Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.
Основной метод решения подобных задач - использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах
Объяснение:
(1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2:
6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.