Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
существует два перевода из периодической дроби в обыкновенную:
1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать столько нулей, скока цифр между запятой и первым периодом: 0,11(6)
116-11 105 7
0,11(6)===
900 900 60
235-2 233
0.2(35)= =
990 990
2)
а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.
б)Найдем значение выражения X · 10k
в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.
г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.
Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
1) - C
2) - A
3) - B
4) - D
существует два перевода из периодической дроби в обыкновенную:
1) надо из числа, стоящего до второго периода, вычесть число, стоящее до первого периода и записать эту разность в числитель, а в знаменателе написать цифру 9 столько раз, сколько цифр в периоде, и после девяток дописать
столько нулей, скока цифр между запятой и первым периодом: 0,11(6)
116-11 105 7
0,11(6)===
900 900 60
235-2 233
0.2(35)= =
990 990
2)
а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k.
б)Найдем значение выражения X · 10k
в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь.
г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные.
0,11(6)=Х
k=1
10^(k)=1
тогда x*10=10*0,116666...=1,166666...
10X-X=1,166666...-0,116666...=1,16-0,11=1,05
9X=1,05
105 7
X==
900 60
0.2(35):
k=2
10^k=100
100X=0.2353535...*100=23,535353
100X-X=23,535353-0.2353535=23,3
99x=23,3
233
x=
900