Пусть S - расстояние между началом и концом пути.
V - скорость первого авто.
Время в пути первого авто = S/V
Второй автомобиль проехал пол пути т.е. S/2 со скоростью на 9 км меньше чем у первого т.е. (V-9)
А вторую половину пути S/2 со скоростью на 60 км/ч
Тогда время в пути второго авто это сумма времени на первом и на втором участке т.е.
S/2 : (V-9) + S/2 : 60 = S/(2V-18) + S/120 = S*2*(V+51)/(240V-2160)
Так как авто прибыли одновременно то время в пути у них одинаковое, т.е.
S*2*(V+51)/(240V-2160) = S/V
Разделим обе части уравнения на S и сократим левую часть на 2 тогда получим уравнение
(V+51)/(120V-1080) = 1/V
после приведения к общему знаменателю и упрощения получаем квадратное уравнение
V^2 -69V +1080=0Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-69)^2 - 4·1·1080 = 4761 - 4320 = 441
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
V1 = ( 69 - √441)/2·1 = ( 69 - 21)/2 = 48/2 = 24 - не подходит по условию т.к. меньше 40V2 = ( 69 + √441)/2·1 = ( 69 + 21)/2 = 90/2 = 45
ответ 45 км/ч
Пусть S - расстояние между началом и концом пути.
V - скорость первого авто.
Время в пути первого авто = S/V
Второй автомобиль проехал пол пути т.е. S/2 со скоростью на 9 км меньше чем у первого т.е. (V-9)
А вторую половину пути S/2 со скоростью на 60 км/ч
Тогда время в пути второго авто это сумма времени на первом и на втором участке т.е.
S/2 : (V-9) + S/2 : 60 = S/(2V-18) + S/120 = S*2*(V+51)/(240V-2160)
Так как авто прибыли одновременно то время в пути у них одинаковое, т.е.
S*2*(V+51)/(240V-2160) = S/V
Разделим обе части уравнения на S и сократим левую часть на 2 тогда получим уравнение
(V+51)/(120V-1080) = 1/V
после приведения к общему знаменателю и упрощения получаем квадратное уравнение
V^2 -69V +1080=0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-69)^2 - 4·1·1080 = 4761 - 4320 = 441
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
V1 = ( 69 - √441)/2·1 = ( 69 - 21)/2 = 48/2 = 24 - не подходит по условию т.к. меньше 40
V2 = ( 69 + √441)/2·1 = ( 69 + 21)/2 = 90/2 = 45
ответ 45 км/ч
Это уравнение имеет 2 решения:
а) x/y = 3; y/x = 1/3; x = 3y
Подставляем во 2 уравнение
x^2 - y^2 = (3y)^2 - y^2 = 9y^2 - y^2 = 8y^2 = 8
y^2 = 1
y1 = -1; x1 = -3
y2 = 1; x2 = 3
б) x/y = 1/3; y/x = 3; y = 3x
Подставляем во 2 уравнение
x^2 - y^2 = x^2 - (3x)^2 = x^2 - 9x^2 = -8x^2 = 8
x^2 = -1
Решений нет.
ответ: (-3; -1); (3; 1)
2) Прямая (BC) через две точки:
(x + 2)/(3 + 2) = (y - 2)/(0 - 2)
(x + 2)/5 = (y - 2)/(-2)
-2(x + 2)/5 = y - 2
y = -2x/5 - 4/5 + 2 = -2x/5 + 6/5
Прямая (AD) через точку А параллельно (BC):
(x + 3)/5 = (y - 2)/(-2)
-2(x + 3)/5 = y - 2
y = -2x/5 - 6/5 + 2 = -2x/5 + 4/5
3)
- здесь область определения никак не ограничена
- здесь ограничение для логарифма
2x + 4 > 0
x > -2
ответ: x ∈ (-oo; -2)