Разложи на множители (t+10)3−0,008, Разложи на множители: 25t2−(t+p)2. (в первой скобке — разность, во второй — сумма во втором примере в конце в квадрате, а в первом в центре в кубе
f(x)= 2x+3 ∛x² Найдите: а) Критические точки функции f(x) на отрезке [-8;1] б) Наибольшее и наименьшее значение функции f(x) на отрезке [-8;1] --- a) Критическая точка функции это значение аргумента при котором производная функции равно нулю или не существует. f'(x) = 2 +3*(2/3) x ^(-1/3) =2 +2/∛x =2(∛x +1) / ∛x f'(x) =0 ⇔ ∛x +1 = 0 ⇔∛x = -1 ⇒ x = -1 и ∛x = 0 ⇒ x = 0 , где производная функции не существует. * * * -1 и 0 ∈ [ -8 ;1] . * * * ответ : -1 ; 0 . б) f'(x) + - + [-1 ] 0 f(x) (возр) ↑ max (убыв) ↓ min (возр) ↑
max f(x) =f(-1) =2*(-1) +3∛(-1)² = -2+3 =1. min f(x) = f(0) =2*(0) +3∛(0)² = 0. ответ : 1 ; 0 .
3) Найдите наибольшее и наименьшее значение функции f(x) =x^5+ 2x^3+3x-11 на отрезке [-1;1] --- f ' (x) =(x⁵ + 2x³ +3x - 11 ) ' =5x⁴+6x² +3 >0 функция возрастающая при всех x ∈( -∞ : ∞) . min f(x) = f(-1) =(-1)⁵ + 2*(-1)³ +3*(-1) - 11 = -1 -2 -3 -11 = -17. max f(x) = f(1) =1⁵ + 2*1³ +3*1 - 11 = - 5. ответ : -17 ; - 5 .
4) Дана функция f(x) = x^3+3x^2+3x+a. Найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;1] равно 6.
f(x) = x³+3x²+3x+a ; f '(x) = 3x²+6x+3 =3(x² +2x+1) =3(x+1)² ≥ 0 →функция везде возрастает min f(x) = f(-2) = (-2)³ +3*(-2)² +3*(-2) +a = -8 +12 -6 +a = a - 4 . По условию min f(x) = 6 a - 4 =6 ⇔a =4+6
172.
1) 5^(x+y)=125, (1)
3^((x-y)²-1)=1; (2)
5^(x+y)=5³, (1)
3^((x-y)²-1)=3^0; (2)
x+y=3, (1)
(x-y-1)(x-y+1)=0; (2)
y=3-x, (1)
(x-3+x-1)(x-3+x+1)=0; (2)
(2x-4)(2x-2)=0;
2x-4=0;
2x=4;
x1=2
или
2x-2=0;
2x=2;
x2=1.
y1=3-2=1;
y2=3-1=2.
ответ: (2;1), (1;2).
2) 3^x+3^y=12, (1)
6^(x+y)=216; (2)
6^(x+y)=6³;
x+y=3;
y=3-x;
3^x+3^(3-x)=12; (1)
3^(2x)-12*3^x+27=0;
3^x=t;
t²-12t+27=0;
D=144-108=36;
t1=(12-6)/2=3;
t2=(12+6)/2=9;
3^x=3;
x1=1;
3^x=9;
x2=2;
y1=3-1=2;
y2=3-2=1.
ответ: (1;2), (2;1).
3) 4^(x+y)=128, (1)
5^(3x-2y-3)=1; (2)
2^(2(x+y))=2^7, (1)
5^(3x-2y-3)=5^0; (2)
2x+2y=7, (1)
3x-2y-3=0; (2)
2y=7-2x, (1)
3x-7+2x-3=0; (2)
6x=10;
x=10/6=5/3;
y=(7-2x)/2=(7-10/3)/2=11/6.
ответ: (5/3;11/6).
4) 3^(2x-y)=1/81, (1)
3^(x-y+2)=27; (2)
3^(2x-y)=3^(-4), (1)
3^(x-y+2)=3³; (2)
2x-y=-3, (1)
x-y+2=3; (2)
x-y=1;
y=x-1;
2x-x+1=-3; (1)
x=-4;
y=-4-1=-5.
ответ: (-4;-5).
173.
1) 4^(x+y)=16, (1)
4^(x+2y-1)=1; (2)
4^(x+y)=4², (1)
4^(x+2y-1)=4^0; (2)
x+y=2, (1)
x+2y-1=0; (2)
y=2-x; (1)
x+2(2-x)-1=0; (2)
x+4-2x-1=0;
-x=-3;
x=3;
y=2-3=-1.
ответ: (3;-1).
2) 6^(2x-y)=√6, (1)
2^(y-2x)=1/√2; (2)
6^(2x-y)=6^(1/2); (1)
2^(y-2x)=2^(-1/2); (2)
2x-y=1/2, (1)
+
y-2x=-1/2; (2)
0=0
ответ: нет решений.
3) 5^(2x+y)=125, (1)
7^(3x-2y)=7; (2)
5^(2x+y)=5³, (1)
7^(3x-2y)=7^1; (2)
2x+y=3, (1)
3x-2y=1; (2)
y=3-2x; (1)
3x-2(3-2x)=1;
3x-6+4x=1;
7x=7;
x=1;
y=3-2*1=1.
ответ: (1;1).
4) 3^(4x-3y)=27√3, (1)
2^(4y+x)=1/(2√2); (2)
3^(4x-3y)=3^(7/2), (1)
2^(4y+x)= 2^(-3/2); (2)
4x-3y=7/2, (1)
4y+x=-3/2; (2)
x=-3/2-4y,
4(-3/2-4y)-3y=7/2; (1)
-6-16y-3y=7/2;
-19y=19/2;
y=-1/2;
x=-3/2-4(-1/2)=-3/2+2=1/2.
ответ: (1/2;-1/2).
2)
f(x)= 2x+3 ∛x²
Найдите:
а) Критические точки функции f(x) на отрезке [-8;1]
б) Наибольшее и наименьшее значение функции f(x) на отрезке [-8;1]
---
a)
Критическая точка функции это значение аргумента при котором производная функции равно нулю или не существует.
f'(x) = 2 +3*(2/3) x ^(-1/3) =2 +2/∛x =2(∛x +1) / ∛x
f'(x) =0 ⇔ ∛x +1 = 0 ⇔∛x = -1 ⇒ x = -1
и
∛x = 0 ⇒ x = 0 , где производная функции не существует.
* * * -1 и 0 ∈ [ -8 ;1] . * * *
ответ : -1 ; 0 .
б)
f'(x) + - +
[-1 ] 0
f(x) (возр) ↑ max (убыв) ↓ min (возр) ↑
max f(x) =f(-1) =2*(-1) +3∛(-1)² = -2+3 =1.
min f(x) = f(0) =2*(0) +3∛(0)² = 0.
ответ : 1 ; 0 .
3)
Найдите наибольшее и наименьшее значение функции
f(x) =x^5+ 2x^3+3x-11 на отрезке [-1;1]
---
f ' (x) =(x⁵ + 2x³ +3x - 11 ) ' =5x⁴+6x² +3 >0 функция возрастающая при всех x ∈( -∞ : ∞) .
min f(x) = f(-1) =(-1)⁵ + 2*(-1)³ +3*(-1) - 11 = -1 -2 -3 -11 = -17.
max f(x) = f(1) =1⁵ + 2*1³ +3*1 - 11 = - 5.
ответ : -17 ; - 5 .
4)
Дана функция f(x) = x^3+3x^2+3x+a. Найдите значение параметра а, при котором наименьшее значение функции f(x) на отрезке [-2;1] равно 6.
f(x) = x³+3x²+3x+a ;
f '(x) = 3x²+6x+3 =3(x² +2x+1) =3(x+1)² ≥ 0 →функция везде возрастает
min f(x) = f(-2) = (-2)³ +3*(-2)² +3*(-2) +a = -8 +12 -6 +a = a - 4 .
По условию min f(x) = 6
a - 4 =6 ⇔a =4+6
ответ: 10 .
Удачи !