Чтобы вычесть факториал из факториала, никакого общего правила нет: всё, что можно сделать, это вынести за скобки общий множитель, ну например:
Тут ничего хитрого нет. Ну и получается, что нужно считать факториал только меньшего числа. С суммой всё получится аналогично.
Однако, если факториалы большие, это не сильно упростит ситуацию. Кроме того, все маленькие факториалы обычно легко запомнить наизусть, и просто вычесть одно число из другого. Я приведу здесь специально список маленьких факториалов, их нужно запомнить:
Дальше знать необязательно. А в приведённом тобой примере, вообще-то, первое действие - деление. На всякий случай.
У=-5х²+6х 1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует. Найдём вершину данной параболы х(в)=-6 / -10 = 0,6 у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8 Значит, максимальное значение у(0,6)=1,8 минимальное значение у(-∞)=-∞. 2) у=-2х²+5х+3, у(х)=-4 -2х²+5х+3=-4 -2х²+5х+7=0 Д=25+56=81=9² х(1)=(-5+9)/-4= -1 х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
Тут ничего хитрого нет. Ну и получается, что нужно считать факториал только меньшего числа. С суммой всё получится аналогично.
Однако, если факториалы большие, это не сильно упростит ситуацию. Кроме того, все маленькие факториалы обычно легко запомнить наизусть, и просто вычесть одно число из другого. Я приведу здесь специально список маленьких факториалов, их нужно запомнить:
Дальше знать необязательно.
А в приведённом тобой примере, вообще-то, первое действие - деление. На всякий случай.
1) график парабола, ветви вниз, значит наибольшее значение достигается в вершине параболы, а наименьшего значения не существует.
Найдём вершину данной параболы
х(в)=-6 / -10 = 0,6
у(в) = -5*0,36+6*0,6 =-1,8+3,6=1,8
Значит, максимальное значение у(0,6)=1,8
минимальное значение у(-∞)=-∞.
2) у=-2х²+5х+3, у(х)=-4
-2х²+5х+3=-4
-2х²+5х+7=0
Д=25+56=81=9²
х(1)=(-5+9)/-4= -1
х(2)=(-5-9)/-4= -3,5 => y(-1)=-4 и y(-3.5)=-4
3) x²-5x-3 K(-1; 3)
1+5-3=3, 3=3 => проходит