Аксио́ма (др.-греч. «утверждение, положение»), или постула́т, — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств.
В решении.
Объяснение: По строкам:
| 2⁴ | 2 | 2⁴ | 2⁹
| 2³ | 2³ | 2³ | 2⁹
| 2² | 2⁵ | 2² | 2⁹
| 2⁹ | 2⁹ | 2⁹ (по столбцам)
1 диагональ - 2⁹;
2 диагональ - 2⁹.
Запись в тетради: 2*2*2*2 = 2⁴;
2*2*2 = 2³;
2*2 = 2²;
2*2*2*2*2 = 2⁵;
Первая строка: 2⁴*2*2⁴ = 2⁹;
Вторая строка: 2³*2³*2³ = 2⁹;
Третья строка: 2²*2⁵*2² = 2⁹;
Первый столбец: 2⁴*2³*2² = 2⁹;
Второй столбец: 2*2³*2⁵ = 2⁹;
Третий столбец: 2⁴*2³*2² = 2⁹.
Первая диагональ: 2⁴*2³*2² = 2⁹;
Вторая диагональ: 2⁴*2³*2² = 2⁹.
Вывод: в магическом квадрате сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинаковая.
Аксио́ма (др.-греч. «утверждение, положение»), или постула́т, — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами. Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств.
А інше я не знаю