Приводим дроби к общему знаменателю. Общий знаменатель 2x·(х-3)·(х-3)·(х+3) Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)² Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0. Приравниваем к нулю числитель 6x² - 18x - 2x² -6x-3x²+18x-27=0, x² - 6x - 27 = 0 D=(-6)² - 4·(-27)=36+108 =144 = 12² x₁=(6-12)/2=-3 или х₂=(6+12)/2=9 Так как знаменатель не должен быть равным нулю, то это означает, что х≠0, х≠3, х≠ -3 Поэтому х₁ = - 3 не является корнем уравнения ответ. х=9
Пусть Х% серебра было во втором сплаве. Тогда (Х+25)% было серебра в первом сп. В первом сплаве было 4 кг серебра, значит, приняв за 100% вес первого сплава, получаем, что он весил (100*4)/(Х+25), а второй, соответственно, весил (100*8)/Х. Значит, третий сплав весит (100*4)/(Х+25)+(100*8)/Х кг. С другой стороны, известно, что в третьем (новом) сплаве стало 4+8=12 кг серебра, что составляет 30%. Получаем (12кг*100%)/30%=40кг - вес третьего сплава. Можем составить ур-е: (100*4)/(Х+25)+(100*8)/Х=40. Приводим его к виду Х^2-5*Х-500=0, получаем один корень Х=25 (второй корень отбрасываем, т.к. он отрицательный). В итоге первый сплав весит 400/(Х+25)=400/50=8 кг, второй 800/Х=800/25=32кг, а третий 40 кг
Приводим дроби к общему знаменателю.
Общий знаменатель
2x·(х-3)·(х-3)·(х+3)
Первую дробь умножаем на 2x·(х-3), вторую дробь на 2x·(х+3), третью дробь на (х-3)²
Получим:
Дробь равна нулю тогда и только тогда, когда числитель равен 0, а знаменатель отличен от 0.
Приравниваем к нулю числитель
6x² - 18x - 2x² -6x-3x²+18x-27=0,
x² - 6x - 27 = 0
D=(-6)² - 4·(-27)=36+108 =144 = 12²
x₁=(6-12)/2=-3 или х₂=(6+12)/2=9
Так как знаменатель не должен быть равным нулю, то это означает, что
х≠0, х≠3, х≠ -3
Поэтому х₁ = - 3 не является корнем уравнения
ответ. х=9