Рассмотрим критическую точку модуля: 4x + 3 = 0 Значит, при x = -3/4, модуль меняет знак. Подставим под модуль число меньшее -3/4. Тогда под модулем получим отрицательное значение. Тогда, при x ≤ 3/4, модуль раскрываем отрицательно.
Рассмотрим нашу функцию на промежутке (-∞; -3/4]: y = x² + 4x + 3. Строим график этого уравнения хотя бы по точкам. Но помним, что этот график лежит на отрезке (-∞; -3/4].
Рассмотрим нашу функцию на промежутке (-3/4; +∞): y = x² - 4x - 3. Строим этот график. Но опять же, он лежит на (-3/4; +∞), а не на всей области X. Если первый график в точке -3/4 не накладывается на второй, не забываем выбить точку в x = -3/4 у второго графика.
Получили график, который я прикрепил как рисунок. Видим, что прямая y = m будет иметь три точки пересечения с нашим графиком, при m = -1, и m равному значению, при котором наши графики меняются. Чтобы найти это значение, подставим X = -3/4 в наше уравнение. Получаем Y = 0.5625. Получаем, m = -1 и m = 0.5625
Этого я не указала,но: нуль подмодульного выражения разбивает функцию на две кусочно-непрерывных из-за геометрического смысла модуля(расстояние), но мы раскрываем его алгебраически. Т.е.,при значениях аргумента,стоящих правее нуля подмодульного выражения и его включая,подмодульное выражение принимает неотрицательные значения,поэтому ничего не изменится,когда мы "скинем" модуль. А если левее его нуля,то подмодульное будет отрицательным,но из-геометрического смысла мы при раскрытии выставляем минус перед модулем(меняем знаки). Я этого не писала(разбора т.е.),но если вы вчитаетесь внимательно,то вы будете шарить в таких графиках. Задача несложная,если есть навык,на моём ГИА был посерьёзней график:) Из точек m:берём ординату вершины одной из парабол,берём ординату абсциссы склейки графиков.
Рассмотрим нашу функцию на промежутке (-∞; -3/4]:
y = x² + 4x + 3. Строим график этого уравнения хотя бы по точкам. Но помним, что этот график лежит на отрезке (-∞; -3/4].
Рассмотрим нашу функцию на промежутке (-3/4; +∞):
y = x² - 4x - 3. Строим этот график. Но опять же, он лежит на (-3/4; +∞), а не на всей области X. Если первый график в точке -3/4 не накладывается на второй, не забываем выбить точку в x = -3/4 у второго графика.
Получили график, который я прикрепил как рисунок.
Видим, что прямая y = m будет иметь три точки пересечения с нашим графиком, при m = -1, и m равному значению, при котором наши графики меняются.
Чтобы найти это значение, подставим X = -3/4 в наше уравнение. Получаем Y = 0.5625. Получаем, m = -1 и m = 0.5625
нуль подмодульного выражения разбивает функцию на две кусочно-непрерывных из-за геометрического смысла модуля(расстояние),
но мы раскрываем его алгебраически.
Т.е.,при значениях аргумента,стоящих правее нуля подмодульного выражения и его включая,подмодульное выражение принимает неотрицательные значения,поэтому ничего не изменится,когда мы "скинем" модуль.
А если левее его нуля,то подмодульное будет отрицательным,но из-геометрического смысла мы при раскрытии выставляем минус перед модулем(меняем знаки).
Я этого не писала(разбора т.е.),но если вы вчитаетесь внимательно,то вы будете шарить в таких графиках.
Задача несложная,если есть навык,на моём ГИА был посерьёзней график:)
Из точек m:берём ординату вершины одной из парабол,берём ординату абсциссы склейки графиков.