а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.
Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
В решении.
Объяснение:
√52 - 10√27 - √52 - 10√27;
1) Нужно разложить первое подкоренное выражение на квадрат разности.
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 - 10√27 + 27 = √(5 - √27)² = |5 - √27| = √27 - 5.
Квадрат первого числа - удвоенное произведение первого числа на второе + квадрат второго числа.
Так как √27 больше 5, то |5 - √27| = -(5 - √27) = √27 - 5.
2) Разложить второе подкоренное выражение на квадрат суммы:
10√27 = 2 * 5 * √27 (удвоенное произведение первого числа на второе).
Значит, первое число = 5, второе √27.
Преобразованное выражение под корнем:
√25 + 10√27 + 27 = √(5 + √27)² = |5 + √27| = 5 + √27.
Квадрат первого числа + удвоенное произведение первого числа на второе + квадрат второго числа.
Так как сумма в модуле положительная, то |5 + √27| = 5 + √27.
3) Вычитание:
√27 - 5 - (5 + √27) = √27 - 5 - 5 - √27 = -10. ответ примера.