Пусть дан прямоугольный треугольник ABC с прямым углом C, и острым углом А=60 градусов. Пусть CDKN – данный прямоугольник, точка D лежит на катете AC , K лежит на гипотенузе AB=8 см, точка N лежит на катете BC.Тогда по условию задачи BC=AB*sin A=8*sin 60=4*корень(3).АС=8*сos 60=8*1\2=4Пусть CD=x см, тогда AD=4-x смТогда DK=AD*tg A=(4-x)*корень(3)Площадь прямоугольника CDKN S(x)=CD*DK=x*(4-x)*корень(3)Ищем производную S’(x)=корень(3)*(4-х-х)=2 *корень(3)*(2-х)Ищем критические точки S’(x)= 2 *корень(3)*(2-х)=0Х=2От 0 до 2 производная больше 0, от 2 до 8 меньше 0, значит в точке 2 у функции максимум, то есть площадь прямоугольника S(x) принимает наибольшее значение для х=2S(2)= 2*(4-2)*корень(3)=4*корень(3).Овтет: 4*корень(3).
ответ: 115 км/час.
Объяснение:
Дано.
Скорость по ровному участку Vровн. = х км/час.
Скорость под гору V под гору =х+5 км/час.
Скорость в гору V в гору = х-15 км/час.
Дорога от А к В равна 100 км в гору
Время туда и обратно затратил 1 час 50 мин.
Решение.
t1= S в гору/(x-15)час =100/(х-15).
t2= S под гору /(х+5) час = 100/(х+5).
Общее время 1 5/6 часа
100/(х-15) + 100/(х+5) = 1 5/6.
После преобразования получим уравнение
11х²-1310х+5175=0.
а=11; b= -1310; c= 5175;
D=1488400 >0 - 2 корня
х1= 115; х2= 4,09 - не соответствует условию.
Скорость автомобиля по ровному участку равна 115 км/час.
Проверим:
Скорость в гору равна 115-15=100 км/час
Скорость под гору равна 115+5=120 км/час
Время в пути 100/100+100/120=1+5/6 =1 5/6 часа или 1 час 50 минут.
Всё правильно!