1. Обсласть опрежедения функции: множество всех действительных чисел. 2. четность функции
Итак, функция четная. 3. Точки пересечения с осью Ох и Оу. 3.1. С осью Ох (у=0)
Через дискриминант
точки с соью Ох
3.2. Точки пересения с осью Оу (х=0)
(0;-3) - точки пересечения с осью Оу
4. Критические точки(возрастание и убывание функции)
Приравняем к нулю
_-_(-1)__+__(0)__-_(1)__+__>
Итак, функция возрастает на промежутке , убывает . В точке х=-1 и х=1 функция имеет локальный минимум, а в точке х=0 - локальный максимум 5. Точки перегиба
Вертикальных, горизональных и наклонных асимптот нет.
ОДЗ:
+ - +
---------(0)----------(3)-------------
/////////// ////////////////
∈ ∞ ∪ ∞
ответ:
ОДЗ:
Замена:
или
или
или
ответ:
ОДЗ:
+ - +
---------(-2)----------(0)-------------
/////////// ////////////////
∈ ∞ ∪ ∞
+ - +
----------(-3)-----------(1)--------------
/////////////////
С учётом ОДЗ получаем
ответ: ∪
ОДЗ:
С учётом ОДЗ получаем
ответ:
2. четность функции
Итак, функция четная.
3. Точки пересечения с осью Ох и Оу.
3.1. С осью Ох (у=0)
Через дискриминант
точки с соью Ох
3.2. Точки пересения с осью Оу (х=0)
(0;-3) - точки пересечения с осью Оу
4. Критические точки(возрастание и убывание функции)
Приравняем к нулю
_-_(-1)__+__(0)__-_(1)__+__>
Итак, функция возрастает на промежутке , убывает . В точке х=-1 и х=1 функция имеет локальный минимум, а в точке х=0 - локальный максимум
5. Точки перегиба
Вертикальных, горизональных и наклонных асимптот нет.