1.Пусть х (м/ч)-скорость улитки при подъеме, тогда х+2 (м/ч)-скорость улитки при спуске. 2. (Вспоминаем физику время движения равно пройденное расстояние делить на время), тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска. Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение: 6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю) 6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2)) (6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим) 3.Уравнение 6х+12 +5х-14х²-28х=0 -14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент) 14х² +17х-12=0, а =14, b=17, c=-12 Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5 x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7 Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной) Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске, тогда 6/0,5=12 часов - время подъема 5/2,5=2 часа - время спуска
Вначале разберемся, что такое точка пересечения - это точка, которая имеет такие координаты, что при подставлении их в ОБА уравнения (в данном случае, окружности и прямой), должно в ОБОИХ случаях получиться верное равенство. 1. Подставим в уравнение окружности вместо у ее зависимость из уравнения прямой у=х-2, и получим (х-3)^2+(x-2)^2=5 (далее раскрываем скобки и приводим к квадратному уравнению) x^2 - 6x +9 +x^2 - 4x +4 =5, x^2 - 6x +9 +x^2 - 4x +4 - 5=0, 2х² - 10х +8=0 ( для простоты разделим все на 2) х² - 5х +4=0, решаем стандартное квадратное уравнение а=1, b=-5, c=4, далее дискриминант, D=b² - 4*a*c=(-5)²-4*1*4=25-16=9 Тогда определяем корни х1=(-b+√D)/2a=(5+3)/2*1=4, х2=(-b-√D)/2a=(5+2)/2*1=1 Теперь определяем координату у, для этого вместо х в ЛЮБОЕ уравнение подставляем найденные значения, но конечно же проще в уравнение прямой, итак: если х1=4, то у1=4-2=2, если х2=1, то у2=1-2=-1, получили две точки А(4;2) и В(1;-1)
2. (Вспоминаем физику время движения равно пройденное расстояние делить на время),
тогда 6/х (ч) - время подъема, 5/(х+2) (ч)- время спуска.
Известно, что всего на свои передвижения (время спуска+время подъема) улитка затратила 14 часов. Составим и решим уравнение:
6/х + 5/(х+2)=14 (переносим 14 в другую часть уравнения и приведем к общему знаменателю)
6/х + 5/(х+2) - 14=0 (общий знаменатель х*(х+2))
(6*(х+2) +5*х - 14*х*(х+2))/(х*(х+2))=0 ( далее вспоминаем равенство 0 дроби, это когда числитель равен 0,а знаменатель от нуля отличен, далее я буду рассматривать только числитель для простоты, а знаменатель писать не буду, он равен нулю, если х=0 или =-2, так что если получатся такие корни, мы их исключим)
3.Уравнение 6х+12 +5х-14х²-28х=0
-14х² -17х+12=0 (умножим на -1, чтобы перед х² стоял положительный коэффициент)
14х² +17х-12=0,
а =14, b=17, c=-12
Определяем дискриминант D=b²-4*a*c=17²-4*14*(-12)=289+672=961, определяем корни x1=(-b+√D)/2a=(-17+31)/28=0,5
x2=(-b-√D)/2a=(-17-31)/28=-48/28=-12/7
Но данный корень х2=-12/7 не подходит во физическому смыслу задачи (скорость не может быть отрицательной)
Тогда нам подходит только х=0,5 - скорость при подъеме, тогда 0,5+2=2,5 м/ч - скорость при спуске,
тогда 6/0,5=12 часов - время подъема
5/2,5=2 часа - время спуска
1. Подставим в уравнение окружности вместо у ее зависимость из уравнения прямой у=х-2, и получим
(х-3)^2+(x-2)^2=5 (далее раскрываем скобки и приводим к квадратному уравнению)
x^2 - 6x +9 +x^2 - 4x +4 =5,
x^2 - 6x +9 +x^2 - 4x +4 - 5=0,
2х² - 10х +8=0 ( для простоты разделим все на 2)
х² - 5х +4=0, решаем стандартное квадратное уравнение
а=1, b=-5, c=4, далее дискриминант, D=b² - 4*a*c=(-5)²-4*1*4=25-16=9
Тогда определяем корни х1=(-b+√D)/2a=(5+3)/2*1=4,
х2=(-b-√D)/2a=(5+2)/2*1=1
Теперь определяем координату у, для этого вместо х в ЛЮБОЕ уравнение подставляем найденные значения, но конечно же проще в уравнение прямой, итак:
если х1=4, то у1=4-2=2,
если х2=1, то у2=1-2=-1,
получили две точки А(4;2) и В(1;-1)