Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
Аида524
02.05.2023 22:34 •
Алгебра
, разложите на множители
Показать ответ
Ответ:
saskey
15.01.2021 07:33
√x² - 3x + 5 = - x² + 3x + 7
x² - 3x + 5 = ( -x² + 3x + 7)²
x² - 3x + 5 = ( - x² + 3x + 7)( - x² + 3x + 7)
x² - 3x + 5 = x⁴ - 3x³ - 7x² - 3x³ + 9x² + 21x - 7x² + 21x + 49
x² - 3x + 5 = x⁴ - 6x³ - 5x² + 42x + 49
- x⁴ + 6x³ + 6x² - 45x - 44 =0
x⁴ - 6x³ - 6x² + 45x + 44 = 0
Разложим на множители и решим:
(x - 4)( x+ 1)( x² - 3x - 11) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x - 4 = 0
x = 4
x + 1 = 0
x = - 1
x² - 3x - 11 = 0
D= b² - 4ac = 9 - 4×(-11) = 9 + 44 = 53
x = ( 3 + √53)/ 2
x = ( 3 - √53) / 2
0,0
(0 оценок)
Ответ:
380969330270
14.08.2020 22:24
F(x) = cos5x · cos(x + π/6)
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z
0,0
(0 оценок)
Популярные вопросы: Алгебра
arscool
30.06.2022 08:27
Решите уравнения 1) (х+2)^3=х^3+8 2) (3х-1)^3=27х^3-1...
mantsigina
30.06.2022 08:27
Найдите наименьший положительный период функции y=cos3x...
Aleksandra987654321
28.08.2021 10:18
ть в . знайдіть дискримінант квадратного тричлена та вкажіть кількість його коренів . 1) x2+4x-5 2)x2-x+7...
reventon1
22.02.2021 17:10
Вдень рождения родители дали саше 300 рублей на фрукты. саша решил купить бананы, яблоки, мандарины и груши. стоимость 1 кг бананов - 25 руб., яблок - 30 руб., мандаринов...
tk271287
28.03.2022 19:20
При каких значениях параметра a квадратное уравнение x^2+ax-4a=0 имеет 1 корень?...
scorpziro
03.05.2022 20:10
Решить уравнение! 32x(в квадрате)-12x+1=0...
Lizkafrolova228
29.01.2022 22:33
Если двузначное число разделить на сумму его цифр, то в частном получится 7 и в остатке 6. если это же двузначное число разделить на произведение его цифр, то в частном...
Sagidanovadi
29.01.2022 22:33
Вколледже для прведения письменного вступительного экзамена по было заготовлено 400 листов бумаги. но на экзаменах по предыдущим предметам отсеялось 20 человек, поэтому...
123polinapolina
29.01.2022 22:33
Две группы туристов отправились одновременно из одного пункта - одна на север со скоростью 4 км\час, а другая на запад, со скоростью 5 км\час. через какое время расстояние...
Анигелятор228
29.01.2022 22:33
Log(5-х)+ log(-1-х)=1 логарифмы с основаниями 7...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
x² - 3x + 5 = ( -x² + 3x + 7)²
x² - 3x + 5 = ( - x² + 3x + 7)( - x² + 3x + 7)
x² - 3x + 5 = x⁴ - 3x³ - 7x² - 3x³ + 9x² + 21x - 7x² + 21x + 49
x² - 3x + 5 = x⁴ - 6x³ - 5x² + 42x + 49
- x⁴ + 6x³ + 6x² - 45x - 44 =0
x⁴ - 6x³ - 6x² + 45x + 44 = 0
Разложим на множители и решим:
(x - 4)( x+ 1)( x² - 3x - 11) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x - 4 = 0
x = 4
x + 1 = 0
x = - 1
x² - 3x - 11 = 0
D= b² - 4ac = 9 - 4×(-11) = 9 + 44 = 53
x = ( 3 + √53)/ 2
x = ( 3 - √53) / 2
g(x) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) = sin5x · sin(x + π/6) + 0.5√3
cos5x · cos(x + π/6) - sin5x · sin(x + π/6) = 0.5√3
cos (6x + π/6) = 0.5√3
6x + π/6 = ⁺₋ π/6 + 2πn n∈Z
1) 6x₁ + π/6 = + π/6 + 2πn n∈Z 2) 6x₂ + π/6 = - π/6 + 2πn n∈Z
1) 6x₁ = 2πn n∈Z 2) 6x₂ = - π/3 + 2πn n∈Z
1) x₁ = πn/3 n∈Z 2) x₂ = - π/18 + πn/3 n∈Z
ответ: x₁ = πn/3 n∈Z
x₂ = - π/18 + πn/3 n∈Z