(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Если а и b - длина и ширина, соответственно, м, то
Рпр-ка = 2а + 2b ---- периметр здания
х, м ---- ширина дорожки
Площадь дорожки складывается из 8 участков, Двух равных по длине длине здания, двух равных по длине ширине здания и четырех квадратов по углам, со стороной равной стороне дорожки.
Находим точки, в которых неравенство равно нулю:
x-1=0 x=1
x+5=0 x=-5
Наносим на прямую (-∞;+∞) эти точки:
-∞-51+∞
Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞)
Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона:
(-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ +
(-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ -
(1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ +
-∞+-5-1++∞ ⇒
x∈(-∞;-5)U(1;+∞).
Р пр-ка = 60 м
Sдор. = 64 м²
шир. дор. = ? м
Решение.
Если а и b - длина и ширина, соответственно, м, то
Рпр-ка = 2а + 2b ---- периметр здания
х, м ---- ширина дорожки
Площадь дорожки складывается из 8 участков, Двух равных по длине длине здания, двух равных по длине ширине здания и четырех квадратов по углам, со стороной равной стороне дорожки.
Sдор. = 4х² + 2ах + 2bх = 4х² + х(2а + 2b) = 4х² + х*Рпр-ка
4х² + 60х = 64 ----- по условию | : 4
х² + 15х - 16 = 0
D = 15² + 4*16 = 225 + 64 = 289 = 17²
х₁ =(-15 + √17²)/2 = (-15+17)/2 = 1 (м) ----- ширина дорожки
х₂ = (-15 - 17)/2 = - 16 м -- отбрасываем, как посторонний корень, не имеющий физического смысла
ответ: 1 м