В левой части можно применить формулу косинуса двойного угла:
В правой части можно заменить по формуле приведения:
Тогда уравнение будет выглядеть так:
Используем формулу суммы косинусов:
В нашем случае получается:
Так как , то:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:
Теперь подбираем корни, которые принадлежат отрезку . Для этого можно решить двойное неравенство для каждой серии корней.
Для первой серии:
Не забываем, что - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, . Подставляем это значение в серию корней, для которой мы решали неравенство.
Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.
Опять же, учитывая то, что - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.
Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток , а именно .
По сути задача сводится к поиску экстремума функции. В нашем случае к поиску минимума. Чтобы это сделать нужно: 1) Взять производную функции V(x); 2) Найти критические точки 3) и если при переходе через критическую точку производная меняет знак с «минуса» на «плюс», то в данной точке функция достигает минимума
Решаем по плану
- критическая точка
Здесь видно, что производная меняет знак с «минуса» на «плюс», то в данной точке Х=0 функция достигает минимума.
В левой части можно применить формулу косинуса двойного угла:
В правой части можно заменить по формуле приведения:
Тогда уравнение будет выглядеть так:
Используем формулу суммы косинусов:
В нашем случае получается:
Так как , то:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:
Теперь подбираем корни, которые принадлежат отрезку . Для этого можно решить двойное неравенство для каждой серии корней.
Для первой серии:
Не забываем, что - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, . Подставляем это значение в серию корней, для которой мы решали неравенство.
Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.
Опять же, учитывая то, что - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.
Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток , а именно .
ответ:
Чтобы это сделать нужно:
1) Взять производную функции V(x);
2) Найти критические точки
3) и если при переходе через критическую точку производная меняет знак с «минуса» на «плюс», то в данной точке функция достигает минимума
Решаем по плану
- критическая точка
Здесь видно, что производная меняет знак с «минуса» на «плюс», то в данной точке Х=0 функция достигает минимума.
Минимальный расход топлива составит
(cм^3/c)
При скорости 0 м/с расход минимальный