Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1) S=(a²√3)/4=16√3 a²=64, a=8 - сторона треугольника основания, т.к. две боковые грани ⊥ плоскости основания, значит пересечение боковых граней ⊥ основанию, т.е. это пересечение - высота пирамиды. Другая грань наклонена под ∠45° к пл-сти основания, значит две другие грани равнобедренные прямоугольные Δ, с катетами =8. Их площади =(8*8)/2+(8*8)/2=64. Найдем длину двух боковых ребер: с²=8²+8²=2*8², с=√(2*8²)=8√2. Боковые ребра: 8, 8√2, 8√2 Найдем апофему боковой грани: h²+4²=128, h=√( 128 -16)=√112=√16*7=4√7, Площадь этой грани =(8*4√7)/2=16√7 Площадь боковой поверхности=64+16√7
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
a²=64, a=8 - сторона треугольника основания, т.к. две боковые грани ⊥ плоскости основания, значит пересечение боковых граней ⊥ основанию, т.е. это пересечение - высота пирамиды. Другая грань наклонена под ∠45° к пл-сти основания, значит две другие грани равнобедренные прямоугольные Δ, с катетами =8. Их площади =(8*8)/2+(8*8)/2=64. Найдем длину двух боковых ребер: с²=8²+8²=2*8², с=√(2*8²)=8√2.
Боковые ребра: 8, 8√2, 8√2
Найдем апофему боковой грани: h²+4²=128, h=√( 128
-16)=√112=√16*7=4√7, Площадь этой грани =(8*4√7)/2=16√7
Площадь боковой поверхности=64+16√7