Х в четвертой степени=(х-2)в квадрате Если а² = b², то обязательно a = плюс-минус b (прости, я не нашла значка плюс-минус). Т.е. мы можем утверждать, что x² = x - 2 или x² = 2 - x. Решим оба уравнения. x² = x - 2 x² - x + 2 = 0 D = (-1)² - 4·1·2 = 1 - 8 = -7. Так как дискриминант отрицательный, действительных решений уравнение не имеет. Теперь решаем второе уравнение: x² = 2 - x x² + x - 2 = 0 D = 1² - 4·1·(-2) = 1 + 8 = 9. Дискриминант положительный, т.е. уравнение имеет два корня: x = (-1 плюс-минус √D) / 2·1 = 1/2 · (-1 плюс-минус 3) = 1/2 · (-1 + 3) = 1/2 · 2 = 1 = 1/2 · (-1 - 3) = 1/2 · (-4) = -2
1) х² - 8х + 15 ≥ 0
Решаем уравнение
х² - 8х + 15 = 0
D = 8² - 4 · 15 = 4 = 2²
x₁ = 0.5(8 - 2) = 3
x₂ = 0.5( 8 + 2) = 5
Значения функции у = х² - 8х + 15 не отрицательны при х≤ х₁ и х≥ х₂
Неравенство имеет решение при х ∈ (-∞; 3] ∪ [5; +∞)
2) х² - 6х + 9 < 0
Преобразуем левую часть неравенства
(х - 3)² < 0
Квадрат любого числа неотрицателен, поэтому неравенство не имеет решений.
3) х² - 4х + 20 ≤ 0
Решаем уравнение
х² - 4х + 20 = 0
D = 4² - 4 · 20 = -64
Уравнение решений не имеет. Поэтому все значения функции у = х² - 4х + 20 положительны, и неравенство не имеет решений.
4) -х² + 7х - 12 < 0
Решаем уравнение
-х² + 7х - 12 = 0
D = 7² - 4 · 12 = 1
x₁ = -0.5(-7 + 1) = 3
x₂ = -0.5(-7 - 1) = 4
Значения функции у = -х² + 7х - 12 отрицательны при х > х₁ и х < х₂
Неравенство имеет решение при х ∈ (3; 4)
Если а² = b², то обязательно a = плюс-минус b (прости, я не нашла значка плюс-минус). Т.е. мы можем утверждать, что
x² = x - 2 или x² = 2 - x.
Решим оба уравнения.
x² = x - 2
x² - x + 2 = 0
D = (-1)² - 4·1·2 = 1 - 8 = -7. Так как дискриминант отрицательный, действительных решений уравнение не имеет.
Теперь решаем второе уравнение:
x² = 2 - x
x² + x - 2 = 0
D = 1² - 4·1·(-2) = 1 + 8 = 9. Дискриминант положительный, т.е. уравнение имеет два корня:
x = (-1 плюс-минус √D) / 2·1 = 1/2 · (-1 плюс-минус 3)
= 1/2 · (-1 + 3) = 1/2 · 2 = 1
= 1/2 · (-1 - 3) = 1/2 · (-4) = -2
проверка:
1 = (1 - 2)²
1 = (-1)²
1 = 1
(-2) = (-2- 2)²
16 = (-4)²
16 = 16