Так как вопрос архивный, то вместо удалённого решения вставляю свое. Примем за 1 объём бассейна. Пусть через 3-ю трубу бассейн наполняется за x часов, значит, через 1-ю трубу он наполнится за x+8 часов, а через 2-ю - за x+8-6=x+2 часов. 1/x - скорость наполнения бассейна через 3-ю трубу, 1/(x+2) - скорость наполнения через 2-ю трубу и 1/(x+8) - через 1-ю. Так как при одновременно открытых 1-й и 2-й трубе бассейн наполняется за то же самое время, что при открытой только 3-й трубе,то 1/(x+2)+1/(x+8)=1/x. Умножая обе части этого уравнения на x(x+2)(x+8), получим x(x+8)+x(x+2)=(x+2)(x+8); x^2+8x+x^2+2x=x^2+10x+16; 2x^2+10x=x^2+10x+16: x^2=16, и так как x>0, то x=4. Таким образом через одну 3-ю трубу бассейн наполняется за 4 часа, через одну 2-ю трубу - за 4+2=6 часов, и через одну 1-ю - за 4+8=12 часов. Проверка: 1/6+1/12=1/4, 2/12+1/12=3/12. ответ: Через одну третью трубу бассейн наполняется за 4 часа.
1.
a) P=P₁+P₂+P₃=0,15+0,25+0,4=0,8 вероятность попадания в 1 из 3-х областей
б) 1-Р=1-0,8=0,2 вероятность промазать (т.к. событие противоположное)
2.
Посчитаем от обратного.
Всего 6*6=36 возможных события
6 вариантов выпадения одинакового числа очков.
6/36 =1/6 вероятность выпадения одинакового числа очков.
Р=1-1/6=5/6 вероятность выпадения разного числа очков
3.
6*6=36 возможных событий
Выпадение очков меньше 3:
{1; 2}, {2; 1} - 2 варианта
Р=2/36=1/18 вероятность выпадения очков меньше 3-х
4.
6*6=36 событий
{6:6} - 1 событие выпадет 2 шестерки
Р=1/36 вероятность, что выпадет 2 шестерки
5.
Более 3-х очков: 4, 5, 6
Менее 3-х очков: 1,2,3
Р=3/6*3/6=1/4 вероятность, что на первой кости выпало
более трех очков, а на второй — менее трех
6.
Вероятность, что выпадет шестерка:
1/6
Вероятность, что выпадут 3 шестерки подряд:
Р=1/6*1/6*1/6=1/216
Примем за 1 объём бассейна. Пусть через 3-ю трубу бассейн наполняется за x часов, значит, через 1-ю трубу он наполнится за x+8 часов, а через 2-ю - за x+8-6=x+2 часов. 1/x - скорость наполнения бассейна через 3-ю трубу, 1/(x+2) - скорость наполнения через 2-ю трубу и 1/(x+8) - через 1-ю.
Так как при одновременно открытых 1-й и 2-й трубе бассейн наполняется за то же самое время, что при открытой только 3-й трубе,то
1/(x+2)+1/(x+8)=1/x. Умножая обе части этого уравнения на x(x+2)(x+8), получим
x(x+8)+x(x+2)=(x+2)(x+8);
x^2+8x+x^2+2x=x^2+10x+16;
2x^2+10x=x^2+10x+16:
x^2=16, и так как x>0, то
x=4.
Таким образом через одну 3-ю трубу бассейн наполняется за 4 часа,
через одну 2-ю трубу - за 4+2=6 часов, и через одну 1-ю - за 4+8=12 часов.
Проверка: 1/6+1/12=1/4, 2/12+1/12=3/12.
ответ: Через одну третью трубу бассейн наполняется за 4 часа.