Исследование точек экстремума функции проведём по первой производной функции. Первая производная равна y'(x)=3*x²-6*x, её значения равны нулю х1=0 (производная меняет знак с + на минус, так что эта точка - точка локального максимума) х2=2 (производная меняет знак с минуса на =, так что эта точка - точка локального минимума). По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
По второй производной исследуем выпуклости и вогнутости. Вторая производная y''(x)=6*x-6, она равна нулю при х3=1, при отрицательной производной у функции выпуклость вверх, при положительной - выпуклость вниз. Графики функций прилагаются.
Объяснение: ( ^ -знак степени x^2 -это х в квадрате)
5) x^2 -3x-5=7-2x, u 7-2x>0, x^2-x-12=0, u x<3,5, корни уравнения
x=-3, x=4(не подходит), отв. х=-3
6) Пусть log0,2 x =t, t^2+t-6=0, корни t=-3 u t=2,
тогда, log0,2 x=-3, x=(1/5)^-3=5^3=125 u log0,2 x=2, x=0,2^2=0,04
ответ: 125; 0,04
7) система 2x-3<= x^2 -6, 2x-3>0, (основание < 1, знак поменяли)
x^2-6-2x+3>=0, x^2 -2x -3>=0, корни -1 и 3 и x>1,5, метод интервалов
+[-1] - [3] + , ответ: [3; +Беск.)
8) lg^2 x +3lg x-4<0 , t=lgx, t^2 +3t -4<0, t= -4, t=1, метод интервалов,
+( -4) - (1)+ t -4<t<1, обратная замена,
-4 <lgx <1, lg10^ (-4) <lgx <lg10, 10^(-4) <x <10, ответ (0,0001;10)