С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Ищем производную y'(x)=4*x^3-4=4(x^3-1)=4(x-1)(x^2+x+1) Нули: x=1 Рисуем прямую 0x: y'<0 y'>0 1 убывает возрастает Значит, x=1 - точка минимума. Отвечаем на вопросы: 1) Минимум на отрезке [0;2] Так как x=1 попадает на отрезок, то в этой точке и содержится минимум. y(1)=1^4-4*1+5=2 - минимум на отрезке [0;2] 2) Максимум на отрезке [0;2] Здесь известно, что при x∈[0;1] функция убывает, а при x∈[1;2] функция возрастает. Это значит, что для нахождения максимума на отрезке нужно сравнить граничные значения и выбрать среди них наибольшее. y(0)=0^4-4*0+5=5 y(2)=2^4-4*2+5=13 max(y(0), y(2))=13 - максимум на отрезке [0;2]
<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
y'(x)=4*x^3-4=4(x^3-1)=4(x-1)(x^2+x+1)
Нули: x=1
Рисуем прямую 0x:
y'<0 y'>0
1
убывает возрастает
Значит, x=1 - точка минимума.
Отвечаем на вопросы:
1) Минимум на отрезке [0;2]
Так как x=1 попадает на отрезок, то в этой точке и содержится минимум. y(1)=1^4-4*1+5=2 - минимум на отрезке [0;2]
2) Максимум на отрезке [0;2]
Здесь известно, что при x∈[0;1] функция убывает, а при x∈[1;2] функция возрастает. Это значит, что для нахождения максимума на отрезке нужно сравнить граничные значения и выбрать среди них наибольшее.
y(0)=0^4-4*0+5=5
y(2)=2^4-4*2+5=13
max(y(0), y(2))=13 - максимум на отрезке [0;2]