1) и сверху и снизу приведем к общему знаменателю: ((ab+a)\b)\((ab-a)\b) вынесем общий множитель, сократим \b, получим a(b+1) \ a(b-1) сократим а, получим (b+1) \ (b-1) .
3) х^2+2x-1≤0 найдем корни: D=4-4=0; D=0, следовательно уравнение имеет смежные ("одинаковые" ) корни, найдем их по формуле х1,2= -b\2a х1,2 =-2\2=-1. В это точке функция равна нулю. Ветви параболы направлены вверх, схематично можно зарисовать и станет видно, что функция на всей своей протяженности >0, только в точке -1 равна нулю, это и будет ответом на вопрос. ответ: х=1
4. Среднее арифметическое - сложить все и разделить на количество. (22+24+28+30+32+18+21) /7 = 175/7=25. Медиана - середина ряда данных, для того чтобы найти ее выпишем весь ряд данных по возрастанию: 18, 21, 22, 24, 28, 30, 32. Теперь попарно зачеркиваем бОльшее и Меньшее число, постепенно приближаясь к середине. Если там останется одно число - оно и будет медианой, если пара чисел - медианой будет их среднее арифметическое. здесь медиана - 24. Спрашивают. на сколько отличается ср.ар и медина. 25-24=1. ответ: 1
5. Странно, что это дают в ГИА, я такого в пробниках еще не встречал.
Зная что один из корней - множитель 75, подберем его и проверим. х1=3, сделаем проверку. (3^3)-3*(3^2) -25*3 + 75 = 81-81-75+75=0 Убедились, что один из корней равен трем. теперь разделим весь этот многочлен на х-3 (на найденный корень), получим: X^2-25=0 X^2=25 x=±5
Сомневаюсь, что это дадут в ГИА - это полноценный десятый класс. х1=3, х2=-5, х3=5. ответ: 3, -5, 5
1) f(x)=1/(sin(x) - 0,5), т.к. функция y = 1/x определена на всем числовом промежутке, кроме x = 0, то и данная функция определена при всех x, кроме sin(x) - 0,5 = 0
sin(x) = 1/2
x = arcsin(1/2) + 2пn => x = п/6 + 2пn
x = п - arcsin(1/2) + 2пn => x = 5п/6 + 2пn
ответ: x ∈ R, x ≠ п/6 + 2пn, 5п/6 + 2пn, n ∈ Z
2)
а) y = 2sin(x ) - 3
Зная, что |sin(x)|≤ 1, то рассмотрим максимальное и минимальное значение функции:
1) и сверху и снизу приведем к общему знаменателю:
((ab+a)\b)\((ab-a)\b) вынесем общий множитель, сократим \b, получим
a(b+1) \ a(b-1) сократим а, получим
(b+1) \ (b-1) .
3) х^2+2x-1≤0
найдем корни:
D=4-4=0; D=0, следовательно уравнение имеет смежные ("одинаковые" ) корни, найдем их по формуле
х1,2= -b\2a
х1,2 =-2\2=-1.
В это точке функция равна нулю.
Ветви параболы направлены вверх, схематично можно зарисовать и станет видно, что функция на всей своей протяженности >0, только в точке -1 равна нулю, это и будет ответом на вопрос.
ответ: х=1
4. Среднее арифметическое - сложить все и разделить на количество.
(22+24+28+30+32+18+21) /7 = 175/7=25.
Медиана - середина ряда данных, для того чтобы найти ее выпишем весь ряд данных по возрастанию:
18, 21, 22, 24, 28, 30, 32. Теперь попарно зачеркиваем бОльшее и Меньшее число, постепенно приближаясь к середине. Если там останется одно число - оно и будет медианой, если пара чисел - медианой будет их среднее арифметическое.
здесь медиана - 24.
Спрашивают. на сколько отличается ср.ар и медина. 25-24=1. ответ: 1
5. Странно, что это дают в ГИА, я такого в пробниках еще не встречал.
Зная что один из корней - множитель 75, подберем его и проверим.
х1=3, сделаем проверку.
(3^3)-3*(3^2) -25*3 + 75 = 81-81-75+75=0
Убедились, что один из корней равен трем.
теперь разделим весь этот многочлен на х-3 (на найденный корень), получим:
X^2-25=0
X^2=25
x=±5
Сомневаюсь, что это дадут в ГИА - это полноценный десятый класс.
х1=3, х2=-5, х3=5.
ответ: 3, -5, 5
1) f(x)=1/(sin(x) - 0,5), т.к. функция y = 1/x определена на всем числовом промежутке, кроме x = 0, то и данная функция определена при всех x, кроме sin(x) - 0,5 = 0
sin(x) = 1/2
x = arcsin(1/2) + 2пn => x = п/6 + 2пn
x = п - arcsin(1/2) + 2пn => x = 5п/6 + 2пn
ответ: x ∈ R, x ≠ п/6 + 2пn, 5п/6 + 2пn, n ∈ Z
2)
а) y = 2sin(x ) - 3
Зная, что |sin(x)|≤ 1, то рассмотрим максимальное и минимальное значение функции:
y = 2 - 3 = -1
y = -2 - 3 = - 5
y = 0 - 3 = -3
ответ: y ∈ [-5; - 1]
б)y = 1 - cos(2x) = 1 - (cos^2(x) - sin^2(x)) = 1 - cos^2(x) + sin^2(x) = 2* sin^2(x)
y = 2 * 1^2 = 2
y = 2 * 0 = 0
ответ: y ∈ [0;2]
3)
а) y = x + cos(x), пусть x = -x
y = -x + cos(-x) = - x + cos(x)
- x + cos(x) ≠ x + cos(x) => ф-я нечетная
б) y = 3x^2 * sin x, пусть x = -x
y = 3 * (-x)^2 * sin(-x) = 3x^2 * (-sin(x)) = - 3x^2 * sin(x)
- 3x^2 * sin(x) ≠ 3x^2 * sin x => ф-я нечетная